Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Jan;29(1):37–47. doi: 10.1016/S0006-3495(80)85116-2

Dynamic Light-Scattering Evidence for the Flexibility of Native Muscle Thin Filaments

Jay Newman, Francis D Carlson
PMCID: PMC1328660  PMID: 6894870

Abstract

We have obtained clear evidence for the flexibility of native scallop adductor thin filaments by studying the temperature and ionic strength dependence of the average decay constants obtained from intensity fluctuation spectroscopic (IFS) measurements. The low-angle (10-25°), average decay constants obtained from time autocorrelation functions of scattered light were independent of concentration (0.08-1.3 mg/ml), scaled with the ratio of temperature to solvent viscosity, T/η, over a range of 4-45°C, and yielded a value for the translational diffusion coefficient of DT5°C = (1.24 ± 0.06) × 10-8 cm2/s. From this value and the Broersma relation for rigid rods, we find an average filament length of 1.06 ± 0.06 μm. Quantitative sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that at high temperatures (> 35°C) or in 0.6 M NaCl, tropomyosin completely dissociates from native thin filaments. Decay constants from high-angle (60-150°C) IFS temperature dependence measurements do not scale with T/η and hence do not show the temperature dependence expected for rigid rods. The differences are not due to any change in length distribution of filaments with temperature or to the free tropomyosin in solution, but are attributed to nonrigid motions of the filaments. Similar experiments on samples in high- and low-salt solvents gave results consistent with this interpretation.

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson F. D., Fraser A. B. Dynamics of F-actin and F-actin complexes. J Mol Biol. 1974 Oct 25;89(2):273–281. doi: 10.1016/0022-2836(74)90518-x. [DOI] [PubMed] [Google Scholar]
  2. Caspar D. L., Cohen C., Longley W. Tropomyosin: crystal structure, polymorphism and molecular interactions. J Mol Biol. 1969 Apr 14;41(1):87–107. doi: 10.1016/0022-2836(69)90128-4. [DOI] [PubMed] [Google Scholar]
  3. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drabikowski W., Nowak E. Studies on the interaction of F-actin with tropomyosin. Eur J Biochem. 1968 Aug;5(3):376–384. doi: 10.1111/j.1432-1033.1968.tb00380.x. [DOI] [PubMed] [Google Scholar]
  5. Fraser A. B., Eisenberg E., Kielley W. W., Carlson F. D. The interaction of heavy meromyosin and subfragment 1 with actin. Physical measurements in the presence and absence of adenosine triphosphate. Biochemistry. 1975 May 20;14(10):2207–2214. doi: 10.1021/bi00681a025. [DOI] [PubMed] [Google Scholar]
  6. Fujime S., Ishiwata S. Dynamic study of F-actin by quasielastic scattering of laser light. J Mol Biol. 1971 Nov 28;62(1):251–265. doi: 10.1016/0022-2836(71)90144-6. [DOI] [PubMed] [Google Scholar]
  7. Gethner J. S., Gaskin F. Dynamic light scattering from solutions of microtubules. Biophys J. 1978 Nov;24(2):505–515. doi: 10.1016/S0006-3495(78)85397-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goll J. H., Stock G. B. Determination by photon correlation spectroscopy of particle size distributions in lipid vesicle suspensions. Biophys J. 1977 Sep;19(3):265–273. doi: 10.1016/S0006-3495(77)85586-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  10. Lee W. I., Schmitz K. S., Lin S. C., Schurr J. M. Dynamic light-scattering studies of DNA. I. The coupling of internal modes with anisotropic translational diffusion in congested solutions. Biopolymers. 1977 Mar;16(3):583–599. doi: 10.1002/bip.1977.360160309. [DOI] [PubMed] [Google Scholar]
  11. Lehman W., Szent-Györgyi A. G. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol. 1975 Jul;66(1):1–30. doi: 10.1085/jgp.66.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Millman B. M., Bennett P. M., Bennett P. M. Structure of the cross-striated adductor muscle of the scallop. J Mol Biol. 1976 May 25;103(3):439–467. doi: 10.1016/0022-2836(76)90212-6. [DOI] [PubMed] [Google Scholar]
  13. Newman J., Swinney H. L., Day L. A. Hydrodynamic properties and structure of fd virus. J Mol Biol. 1977 Nov 5;116(3):593–603. doi: 10.1016/0022-2836(77)90086-9. [DOI] [PubMed] [Google Scholar]
  14. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  15. Szent-Györgyi A. G., Cohen C., Kendrick-Jones J. Paramyosin and the filaments of molluscan "catch" muscles. II. Native filaments: isolation and characterization. J Mol Biol. 1971 Mar 14;56(2):239–258. doi: 10.1016/0022-2836(71)90462-1. [DOI] [PubMed] [Google Scholar]
  16. Tanaka H., Oosawa F. The effect of temperature on the interaction between F-actin and tropomyosin. Biochim Biophys Acta. 1971 Nov 2;253(1):274–283. doi: 10.1016/0005-2728(71)90253-2. [DOI] [PubMed] [Google Scholar]
  17. Tanaka H. The helix content of tropomyosin and the interaction between tropomyosin and F-actin under various conditions. Biochim Biophys Acta. 1972 Oct 31;278(3):556–566. doi: 10.1016/0005-2795(72)90015-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES