Abstract
The dielectric permittivity and conductivity of muscle fibers from the giant barnacle, Balanus nubilus, have been measured at 1, 25, and 37 degrees C, between 10 MHz and 17 GHz. The dominant microwave dielectric relaxation process in these fibers is due to dipolar relaxation of the tissue water, which shows a characteristic relaxation frequency equal to that of pure water, ranging from 9 GHz (1 degree C) to 25 GHz (37 degree C). The total permittivity decrease, epsilon 0 -- epsilon infinity, due to this process accounts for approximately 95% of the water content of the tissue; thus, the major fraction of tissue water is dielectrically identical to the pure fluid on a picosecond time scale. A second dielectric process contributes significantly to the tissue dielectric properties between 0.1 and 1--5 GHz, and arises in part form Maxwell-Wagner effects due to the electrolyte content of the tissue, and in part from dielectric relaxation of the tissue proteins themselves.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cole R. H. Dielectric theory and properties of DNA in solution. Ann N Y Acad Sci. 1977 Dec 30;303:59–73. doi: 10.1111/j.1749-6632.1977.tb55920.x. [DOI] [PubMed] [Google Scholar]
- Essex C. G., Grant E. H., Sheppard R. J., South G. P., Symonds M. S., Mills G. L., Slack J. Dielectric properties of normal and abnormal lipoproteins in aqueous solution. Ann N Y Acad Sci. 1977 Dec 30;303:142–158. doi: 10.1111/j.1749-6632.1977.tb55927.x. [DOI] [PubMed] [Google Scholar]
- Foster K. R., Bidinger J. M., Carpenter D. O. The electrical resistivity of cytoplasm. Biophys J. 1976 Sep;16(9):991–1001. doi: 10.1016/S0006-3495(76)85750-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant E. H., Keefe S. E., Takashima S. The dielectric behavior of aqueous solutions of bovine serum albumin from radiowave to microwave frequencies. J Phys Chem. 1968 Dec;72(13):4373–4380. doi: 10.1021/j100859a004. [DOI] [PubMed] [Google Scholar]
- Mandel M. Dielectric properties of charged linear macromolecules with particular reference to DNA. Ann N Y Acad Sci. 1977 Dec 30;303:74–89. doi: 10.1111/j.1749-6632.1977.tb55921.x. [DOI] [PubMed] [Google Scholar]
- Masszi G. Dielectric relaxation and water structure in gelatine solutions. Acta Biochim Biophys Acad Sci Hung. 1972;7(4):349–357. [PubMed] [Google Scholar]
- Masszi G., Szijártó Z., Gróf P. Investigations on the ion- and water-binding of muscle by microwave measurements. Acta Biochim Biophys Acad Sci Hung. 1976;11(2-3):129–131. [PubMed] [Google Scholar]
- PAULY H., PACKER L., SCHWAN H. P. Electrical properties of mitochondrial membranes. J Biophys Biochem Cytol. 1960 Jul;7:589–601. doi: 10.1083/jcb.7.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennock B. E., Schwan H. P. Further observations on the electrical properties of hemoglobin-bound water. J Phys Chem. 1969 Aug;73(8):2600–2610. doi: 10.1021/j100842a024. [DOI] [PubMed] [Google Scholar]
- Reisin I. L., Ling G. N. Exchange of 3HHO in intact isolated muscle fiber of the giant barnacle. Physiol Chem Phys. 1973;5(3):183–208. [PubMed] [Google Scholar]
- SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]
- Schwan H. P., Foster K. R. Microwave dielectric properties of tissue. Some comments on the rotational mobility of tissue water. Biophys J. 1977 Feb;17(2):193–197. doi: 10.1016/S0006-3495(77)85637-3. [DOI] [PMC free article] [PubMed] [Google Scholar]