Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Apr;30(1):137–147. doi: 10.1016/S0006-3495(80)85082-X

A theoretical approach to the analysis of axonal transport.

S I Rubinow, J J Blum
PMCID: PMC1328718  PMID: 6167296

Abstract

A theoretical model of intra-axonal transport is proposed that presupposes a carrier system moving down the axon in a distal direction. Protein and particle transport is achieved by their reversible association with the distally moving carriers. Mathematical equations representing the concentrations of moving carriers and proteins and/or particles within the axon at any position and time are proposed. Analysis of the equations demonstrates that a traveling wave solution for the particle concentration (an experimental fact) is possible provided the chemical interaction between particles and carriers exhibits positive cooperativity. The phase velocity of the wave solution is interpreted as the observed velocity of the intra-axonal transport, known to be independent of position of observation. In addition, the theory predicts a spectrum of transport velocities for different proteins, in agreement with observations. The velocity of a given protein is dependent on its affinity to the carrier.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks P., Mayor D. Intra-axonal transport in noradrenergic neurons in the sympathetic nervous system. Biochem Soc Symp. 1972;(36):133–149. [PubMed] [Google Scholar]
  2. Breuer A. C., Christian C. N., Henkart M., Nelson P. G. Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines. J Cell Biol. 1975 Jun;65(3):562–576. doi: 10.1083/jcb.65.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brimijoin S., Olsen J., Rosenson R. Comparison of the temperature-dependence of rapid axonal transport and microtubules in nerves of the rabbit and bullfrog. J Physiol. 1979 Feb;287:303–314. doi: 10.1113/jphysiol.1979.sp012660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byers M. R. Structural correlates of rapid axonal transport: evidence that microtubules may not be directly involved. Brain Res. 1974 Jul 19;75(1):97–113. doi: 10.1016/0006-8993(74)90773-2. [DOI] [PubMed] [Google Scholar]
  5. Caron J. M., Berlin R. D. Interaction of microtubule proteins with phospholipid vesicles. J Cell Biol. 1979 Jun;81(3):665–671. doi: 10.1083/jcb.81.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edstrom A., Mattsson H. Fast axonal transport in vitro in the sciatic system of the frog. J Neurochem. 1972 Jan;19(1):205–221. doi: 10.1111/j.1471-4159.1972.tb01270.x. [DOI] [PubMed] [Google Scholar]
  7. Friede R. L., Ho K. C. The relation of axonal transport of mitochondria with microtubules and other axoplasmic organelles. J Physiol. 1977 Feb;265(2):507–519. doi: 10.1113/jphysiol.1977.sp011727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., Shelanski M. L. A dynein-like protein associated with neurotubules. FEBS Lett. 1974 Apr 1;40(2):281–286. doi: 10.1016/0014-5793(74)80244-9. [DOI] [PubMed] [Google Scholar]
  9. Grafstein B. Axonal transport: communication between soma and synapse. Adv Biochem Psychopharmacol. 1969;1:11–25. [PubMed] [Google Scholar]
  10. Griffin J. W., Hoffman P. N., Clark A. W., Carroll P. T., Price D. L. Slow axonal transport of neurofilament proteins: impairment of beta,beta'-iminodipropionitrile administration. Science. 1978 Nov 10;202(4368):633–635. doi: 10.1126/science.81524. [DOI] [PubMed] [Google Scholar]
  11. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lasek R. J. Axonal transport of proteins in dorsal root ganglion cells of the growing cat: A comparison of growing and mature neurons. Brain Res. 1970 May 20;20(1):121–126. doi: 10.1016/0006-8993(70)90160-5. [DOI] [PubMed] [Google Scholar]
  13. Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
  14. Ochs S. Rate of fast axoplasmic transport in mammalian nerve fibres. J Physiol. 1972 Dec;227(3):627–645. doi: 10.1113/jphysiol.1972.sp010051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
  16. Schmitt F. O. Fibrous proteins--neuronal organelles. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092–1101. doi: 10.1073/pnas.60.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Willard M. B., Hulebak K. L. The intra-axonal transport of polypeptide H: evidence for a fifth (very slow) group of transported proteins in the retinal ganglion cells of the rabbit. Brain Res. 1977 Nov 11;136(2):289–306. doi: 10.1016/0006-8993(77)90804-6. [DOI] [PubMed] [Google Scholar]
  18. Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Willard M., Wiseman M., Levine J., Skene P. Axonal transport of actin in rabbit retinal ganglion cells. J Cell Biol. 1979 Jun;81(3):581–591. doi: 10.1083/jcb.81.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES