Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Apr;30(1):149–157. doi: 10.1016/S0006-3495(80)85083-1

Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin.

M Tsuda, T G Ebrey
PMCID: PMC1328719  PMID: 7260262

Abstract

The effects of high pressure upon the absorption spectra and isomeric composition of the dark (bRD) and light adapted (bRL) forms of bacteriorhodopsin were examined. Pressure favors the 13-cis form of bacteriorhodopsin (bR13-cis). The equilibrium isomeric composition and absorption spectra of bacteriorhodopsin samples at a given pressure were the same starting from either light or dark adapted bacteriorhodopsin. From the effect of pressure on the equilibrium constant between bRall-trans in equilibrium bR13-cis in the dark, the molar volume change between bRall-trans and bR13-cis was found to be -7.8 +/- 3.2 ml/mol. This volume change suggests a difference in conformation between dark- and light-adapted bacteriorhodopsin, but the magnitude of the change is small, involving only a small number of the protein residues.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aton B., Doukas A. G., Callender R. H., Becher B., Ebrey T. G. Resonance Raman study of the dark-adapted form of the purple membrane protein. Biochim Biophys Acta. 1979 Feb 26;576(2):424–428. doi: 10.1016/0005-2795(79)90417-3. [DOI] [PubMed] [Google Scholar]
  2. Becher B. M., Cassim J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem. 1975;5(2):161–178. doi: 10.1080/00327487508061568. [DOI] [PubMed] [Google Scholar]
  3. Becher B., Cassim J. Y. Effects of light adaptation on the purple membrane structure of Halobacterium halobium. Biophys J. 1976 Oct;16(10):1183–1200. doi: 10.1016/S0006-3495(76)85767-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lamola A. A., Yamane T., Zipp A. Effects of detergents and high pressures upon the metarhodopsin I--metarhodopsin II equilibrium. Biochemistry. 1974 Feb 12;13(4):738–745. doi: 10.1021/bi00701a016. [DOI] [PubMed] [Google Scholar]
  5. Maeda A., Iwasa T., Yoshizawa T. Isomeric composition of retinal chromophore in dark-adapted bacteriorhodopsin. J Biochem. 1977 Dec;82(6):1599–1604. doi: 10.1093/oxfordjournals.jbchem.a131855. [DOI] [PubMed] [Google Scholar]
  6. Oesterhelt D., Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853–2857. doi: 10.1073/pnas.70.10.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ohno K., Takeuchi Y., Yoshida M. Light-induced formation of the 410 nm intermediate from reconstituted bacteriorhodopsin. J Biochem. 1977 Oct;82(4):1177–1180. doi: 10.1093/oxfordjournals.jbchem.a131792. [DOI] [PubMed] [Google Scholar]
  8. Pettei M. J., Yudd A. P., Nakanishi K., Henselman R., Stoeckenius W. Identification of retinal isomers isolated from bacteriorhodopsin. Biochemistry. 1977 May 3;16(9):1955–1959. doi: 10.1021/bi00628a031. [DOI] [PubMed] [Google Scholar]
  9. Suzuki K., Taniguchi Y. Effect of pressure on biopolymers and model systems. Symp Soc Exp Biol. 1972;26:103–124. [PubMed] [Google Scholar]
  10. Tokunaga F., Iwasa T., Yoshizawa T. Photochemical reaction of bacteriorhodopsin. FEBS Lett. 1976 Dec 15;72(1):33–38. doi: 10.1016/0014-5793(76)80807-1. [DOI] [PubMed] [Google Scholar]
  11. Tsuda M., Shirotani I., Minomura S., Terayama Y. Pressure induced intermediates in the photochemical reaction of squid rhodopsin. Biochem Biophys Res Commun. 1977 Jun 20;76(4):989–994. doi: 10.1016/0006-291x(77)90953-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES