Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Apr;30(1):159–172. doi: 10.1016/S0006-3495(80)85084-3

Electrokinetic properties of synaptic vesicles and synaptosomal membranes.

D P Siegel, B R Ware
PMCID: PMC1328720  PMID: 7260263

Abstract

Using the technique of electrophoretic light scattering, we have measured the electrophoretic mobilities of synaptic vesicles and synaptosomal plasma membranes isolated from guinea-pig cerebral cortex. The electrophoretic mobility of synaptic vesicles is slightly greater than that of synaptosomal plasma membranes. Ca+2 and Mg+2 reduced the mobility of both species to the same extent at physiologically relevant concentrations (0-1 mM) and near-physiologic ionic strength. The extent of the reduction was not large (approximately 6% for synaptic vesicles in the presence of 100 mM KCl) at 1 mM divalent cation concentrations. At concentrations of approximately 2 mM and higher, Ca+2 reduced the mobility of synaptic vesicles more than did Mg/2. A similar but much smaller effect was observed in the case of synaptosomal plasma membranes. The addition of 1 mM Mg+2-ATP had no effect upon synaptic vesicle mobility either in the presence or absence of the ionophores nigericin or valinomycin. These data, together with earlier work (Siegel et al., 1978, Biophys. J. 22:341-346), demonstrate that substantial reduction of the average electrostatic surface charge density is not the most important role of divalent cations in promoting close approach of secretory granules and secretory cell membranes, and that it is certainly not the Ca+2-specific step in exocytosis.

Full text

PDF
159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
  2. Bosmann H. B. Sialic acid on the synaptosome surface and effect of concanavalin A and trypsin on synaptosome electrophoretic mobility. FEBS Lett. 1972 Apr 15;22(1):97–100. doi: 10.1016/0014-5793(72)80229-1. [DOI] [PubMed] [Google Scholar]
  3. Creutz C. E., Pazoles C. J., Pollard H. B. Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem. 1978 Apr 25;253(8):2858–2866. [PubMed] [Google Scholar]
  4. Creutz C. E., Pazoles C. J., Pollard H. B. Self-association of synexin in the presence of calcium. Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates. J Biol Chem. 1979 Jan 25;254(2):553–558. [PubMed] [Google Scholar]
  5. Douglas W. W. Involvement of calcium in exocytosis and the exocytosis--vesiculation sequence. Biochem Soc Symp. 1974;(39):1–28. [PubMed] [Google Scholar]
  6. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  7. Fonnum F. The 'compartmentation' of choline acetyltransferase within the synaptosome. Biochem J. 1967 Apr;103(1):262–270. doi: 10.1042/bj1030262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Formby B., Hvidt A., Morris S. J., Larsen J. V. The size of rat brain microsome and synaptic vesicles estimated by light scattering. Biochim Biophys Acta. 1972 Oct 25;279(3):407–415. doi: 10.1016/0304-4165(72)90161-4. [DOI] [PubMed] [Google Scholar]
  9. Haynes D. H., Kolber M. A., Morris S. J. Short and long-range forces involved in cation-induced aggregation of chromaffin granule membranes. J Theor Biol. 1979 Dec 21;81(4):713–743. doi: 10.1016/0022-5193(79)90278-9. [DOI] [PubMed] [Google Scholar]
  10. Haynes D. H., Lansman J., Cahill A. L., Morris S. J. Kinetics of cation-induced aggregation of Torpedo electric organ synaptic vesicles. Biochim Biophys Acta. 1979 Nov 2;557(2):340–353. doi: 10.1016/0005-2736(79)90332-8. [DOI] [PubMed] [Google Scholar]
  11. Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoss W., Okumura K., Formaniak M., Tanaka R. Relation of cation binding sites on synaptic vesicles to opiate action. Life Sci. 1979 Mar 12;24(11):1003–1009. doi: 10.1016/0024-3205(79)90319-9. [DOI] [PubMed] [Google Scholar]
  13. Jones D. H., Matus A. I. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta. 1974 Aug 9;356(3):276–287. doi: 10.1016/0005-2736(74)90268-5. [DOI] [PubMed] [Google Scholar]
  14. Kadota K., Kadota T. Isolation of coated vesicles, plain synaptic vesicles, and flocculent material from a crude synaptosome fraction of guinea pig whole brain. J Cell Biol. 1973 Jul;58(1):135–151. doi: 10.1083/jcb.58.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kadota K., Mori S., Imaizumi R. The properties of ATPase of synaptic vesicle fraction. J Biochem. 1967 Apr;61(4):424–432. doi: 10.1093/oxfordjournals.jbchem.a128565. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Llinás R. R. Depolarization-release coupling systems in neurons. Neurosci Res Program Bull. 1977 Dec;15(4):555–687. [PubMed] [Google Scholar]
  18. Maron R., Kanner B. I., Schuldiner S. The role of a transmembrane pH gradient in 5-hydroxy tryptamine uptake by synaptic vesicles from rat brain. FEBS Lett. 1979 Feb 15;98(2):237–240. doi: 10.1016/0014-5793(79)80190-8. [DOI] [PubMed] [Google Scholar]
  19. Matthews E. K., Nordmann J. J. The synaptic vesicle: calcium ion binding to the vesicle membrane and its modification by drug action. Mol Pharmacol. 1976 Sep;12(5):778–788. [PubMed] [Google Scholar]
  20. McLaughlin J., Case K. R., Bosmann H. B. Electrokinetic properties of isolated cerebral-cortex synaptic vesicles. Biochem J. 1973 Dec;136(4):919–926. doi: 10.1042/bj1360919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan I. G., Vincendon G., Gombos G. Adult rat brain synaptic vesicles. I. Isolation and characterization. Biochim Biophys Acta. 1973 Oct 5;320(3):671–680. doi: 10.1016/0304-4165(73)90147-5. [DOI] [PubMed] [Google Scholar]
  22. Morris S. J., Chiu V. C., Haynes D. H. Divalent cation-induced aggregation of chromaffin granule membranes. Membr Biochem. 1979;2(2):163–201. doi: 10.3109/09687687909063864. [DOI] [PubMed] [Google Scholar]
  23. Morris S. J., Schober R. Demonstration of binding sites for divalent and trivalent ions on the outer surface of chromaffin-granule membranes. Eur J Biochem. 1977 May 2;75(1):1–12. doi: 10.1111/j.1432-1033.1977.tb11498.x. [DOI] [PubMed] [Google Scholar]
  24. Nagy A., Baker R. R., Morris S. J., Whittaker V. P. The preparation and characterization of synaptic vesicles of high purity. Brain Res. 1976 Jun 11;109(2):285–309. doi: 10.1016/0006-8993(76)90531-x. [DOI] [PubMed] [Google Scholar]
  25. Omura T., Takesue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem. 1970 Feb;67(2):249–257. doi: 10.1093/oxfordjournals.jbchem.a129248. [DOI] [PubMed] [Google Scholar]
  26. Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Portis A., Newton C., Pangborn W., Papahadjopoulos D. Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry. 1979 Mar 6;18(5):780–790. doi: 10.1021/bi00572a007. [DOI] [PubMed] [Google Scholar]
  28. Rothlein J. E., Parsons S. M. Specificity of association of a Ca2+/Mg2+ ATPase with cholinergic synaptic vesicles from Torpedo electric organ. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1069–1076. doi: 10.1016/0006-291x(79)91517-1. [DOI] [PubMed] [Google Scholar]
  29. Smith A. P., Loh H. H. The topographical arrangement of enzymes in synaptosomal plasma membrane. J Neurochem. 1977 Dec;29(6):1163–1167. doi: 10.1111/j.1471-4159.1977.tb06527.x. [DOI] [PubMed] [Google Scholar]
  30. Tanaka R., Takeda M., Jaimovich M. Characterization of ATPases of plain synaptic vesicle and coated vesicle fractions isolated from rat brains. J Biochem. 1976 Oct;80(4):831–837. doi: 10.1093/oxfordjournals.jbchem.a131344. [DOI] [PubMed] [Google Scholar]
  31. Toll L., Howard B. D. Role of Mg2+-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry. 1978 Jun 27;17(13):2517–2523. doi: 10.1021/bi00606a010. [DOI] [PubMed] [Google Scholar]
  32. Weller M. Evidence for the presynaptic location of adenylate cyclase and the cyclic AMP-stimulated protein kinase which is bound to synaptic membranes. Biochim Biophys Acta. 1977 Sep 19;469(3):350–354. doi: 10.1016/0005-2736(77)90171-7. [DOI] [PubMed] [Google Scholar]
  33. Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Whittaker V. P. Some properties of synaptic membranes isolated from the central nervous system. Ann N Y Acad Sci. 1966 Jul 14;137(2):982–998. doi: 10.1111/j.1749-6632.1966.tb50211.x. [DOI] [PubMed] [Google Scholar]
  35. Zucker R. S., Steinhardt R. A. Calcium activation of the cortical reaction in sea urchin eggs. Nature. 1979 Jun 28;279(5716):820–821. doi: 10.1038/279820a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES