Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Aug;31(2):293–297. doi: 10.1016/S0006-3495(80)85059-4

The standard Hodgkin-Huxley model and squid axons in reduced external Ca++ fail to accommodate to slowly rising currents.

E Jakobsson, R Guttman
PMCID: PMC1328786  PMID: 7260290

Abstract

Accommodation may be defined as an increase in the threshold of an excitable membrane when the membrane is subjected to a sustained subthreshold depolarizing stimulus. Some excitable membranes show accommodation in response to currents which rise linearly at a very slow rate. In this report we point out a theoretical and an experimental counterexample, i.e., a nerve model and an axon which do not accommodate. The nerve model is the standard Hodgkin-Huxley axon, which Hodgkin and Huxley expected not to be excited by a very slowly rising current. This expectation is often quoted as fact, in spite of contrary calculations which we confirm. We have found that squid axons in seawater with reduced divalent cation concentration also do not accommodate to slowly rising currents.

Full text

PDF
293

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman W. J., Jr, Fitzhugh R. Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space. Fed Proc. 1975 Apr;34(5):1322–1329. [PubMed] [Google Scholar]
  2. CHANDLER W. K., FITZHUGH R., COLE K. S. Theoretical stability properties of a space-clamped axon. Biophys J. 1962 Mar;2:105–127. doi: 10.1016/s0006-3495(62)86844-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRANKENHAEUSER B., VALLBO A. B. ACCOMMODATION IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. Acta Physiol Scand. 1965 Jan-Feb;63:1–20. doi: 10.1111/j.1748-1716.1965.tb04037.x. [DOI] [PubMed] [Google Scholar]
  6. Garfinkel D., Marbach C. B., Shapiro N. Z. Stiff differential equations. Annu Rev Biophys Bioeng. 1977;6:525–542. doi: 10.1146/annurev.bb.06.060177.002521. [DOI] [PubMed] [Google Scholar]
  7. Guttman R., Barnhill R. Oscillation and repetitive firing in squid axons. Comparison of experiments with computations. J Gen Physiol. 1970 Jan;55(1):104–118. doi: 10.1085/jgp.55.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guttman R., Barnhill R. Temperature dependence of accommodation and excitation in space-clamped axons. J Gen Physiol. 1968 Jun;51(6):759–769. doi: 10.1085/jgp.51.6.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAGIWARA S., OOMURA Y. The critical depolarization for the spike in the squid giant axon. Jpn J Physiol. 1958 Sep 15;8(3):234–245. doi: 10.2170/jjphysiol.8.234. [DOI] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J Gen Physiol. 1962 Jul;45:1195–1216. doi: 10.1085/jgp.45.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jakobsson E. A fully coupled transient excited state model for the sodium channel. I. Conductance in the voltage clamped case. J Math Biol. 1978 Mar 3;5(2):121–142. doi: 10.1007/BF00275895. [DOI] [PubMed] [Google Scholar]
  13. Jakobsson E. A fully coupled transient excited state model for the sodium channel. II. Implications for action potential generation, threshold, repetitive firing, and accommodation. J Math Biol. 1978 Aug 31;6(3):235–248. doi: 10.1007/BF02547799. [DOI] [PubMed] [Google Scholar]
  14. Katz B. Multiple response to constant current in frog's medullated nerve. J Physiol. 1936 Nov 6;88(2):239–255. doi: 10.1113/jphysiol.1936.sp003435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rinzel J. On repetitive activity in nerve. Fed Proc. 1978 Dec;37(14):2793–2802. [PubMed] [Google Scholar]
  16. Shoukimas J. J. Effect of calcium upon sodium inactivation in the giant axon of Loligo pealei. J Membr Biol. 1978 Jan 18;38(3):271–289. doi: 10.1007/BF01871926. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES