Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Sep;31(3):393–401. doi: 10.1016/S0006-3495(80)85067-3

Photoelectric conversion by bacteriorhodopsin in charged synthetic membranes.

K Singh, R Korenstein, H Lebedeva, S R Caplan
PMCID: PMC1328798  PMID: 7260294

Abstract

Photoelectroactivity of oriented purple membrane layers attached to an ion exchange film has been investigated. The action spectrum of the photocurrent followed the absorption spectrum of bacteriorhodopsin. The intactness of structure and function of bacteriorhodopsin was demonstrated by studies of absorption and photocycle kinetics. The direction of the photocurrent suggests that the extracellular surface of purple membrane is more positive. Photocurrents as high as 20 microA cm-2 were obtained in some preparations. The dependence of steady-state photocurrents on intensity of illumination and temperature was also studied. The initial rate of build-up of photocurrent depends linearly on the intensity of illumination while the off rate does not exhibit any dependence on the intensity of illumination. With rise in temperature an increase in the steady state photocurrent has been observed. This dependence was found to be linear when increase of the photocurrent due to proton translocation alone was considered.

Full text

PDF
393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdulaev N. G., Feigina M. Y., Kiselev A. V., Ovchinnikov Y. A., Drachev L. A., Kaulen A. D., Khitrina L. V., Skulachev V. P. Products of limited proteolysis of bacteriorhodopsin generate a membrane potential. FEBS Lett. 1978 Jun 15;90(2):190–194. doi: 10.1016/0014-5793(78)80366-4. [DOI] [PubMed] [Google Scholar]
  2. Blaurock A. E., Stoeckenius W. Structure of the purple membrane. Nat New Biol. 1971 Sep 29;233(39):152–155. doi: 10.1038/newbio233152a0. [DOI] [PubMed] [Google Scholar]
  3. Blok M. C., Hellingwerf K. J., Van Dam K. Reconstitution of bacteriorhodopsin in a millipore filter system. FEBS Lett. 1977 Apr 1;76(1):45–50. doi: 10.1016/0014-5793(77)80117-8. [DOI] [PubMed] [Google Scholar]
  4. Blok M. C., van Dam K. Association of bacteriorhodopsin-containing phospholipid vesicles with phospholipid-impregnated millipore filters. Biochim Biophys Acta. 1978 Feb 2;507(1):48–61. doi: 10.1016/0005-2736(78)90373-5. [DOI] [PubMed] [Google Scholar]
  5. Dancsházy Z., Karvaly B. Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic study. FEBS Lett. 1976 Dec 15;72(1):136–138. doi: 10.1016/0014-5793(76)80829-0. [DOI] [PubMed] [Google Scholar]
  6. Drachev L. A., Frolov V. N., Kaulen A. D., Liberman E. A., Ostroumov S. A., Plakunova V. G., Semenov A. Y., Skulachev V. P. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin. J Biol Chem. 1976 Nov 25;251(22):7059–7065. [PubMed] [Google Scholar]
  7. Drachev L. A., Kaulen A. D., Ostroumov S. A., Skulachev V. P. Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane. FEBS Lett. 1974 Feb 1;39(1):43–45. doi: 10.1016/0014-5793(74)80012-8. [DOI] [PubMed] [Google Scholar]
  8. Eisenbach M., Garty H., Bakker E. P., Klemperer G., Rottenberg H., Caplan S. R. Kinetic analysis of light-induced pH changes in bacteriorhodopsin-containing particles from Halobacterium halobium. Biochemistry. 1978 Oct 31;17(22):4691–4698. doi: 10.1021/bi00615a016. [DOI] [PubMed] [Google Scholar]
  9. Eisenbach M., Weissmann C., Tanny G., Caplan S. R. Bacteriorhodopsin-loaded charged synthetic membranes. Utilization of light energy to generate electrical current. FEBS Lett. 1977 Sep 1;81(1):77–80. doi: 10.1016/0014-5793(77)80932-0. [DOI] [PubMed] [Google Scholar]
  10. Fisher K. A., Yanagimoto K., Stoeckenius W. Oriented adsorption of purple membrane to cationic surfaces. J Cell Biol. 1978 May;77(2):611–621. doi: 10.1083/jcb.77.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herrmann T. R., Rayfield G. W. A measurement of the proton pump current generated by bacteriorhodopsin in black lipid membranes. Biochim Biophys Acta. 1976 Sep 7;443(3):623–628. doi: 10.1016/0005-2736(76)90482-x. [DOI] [PubMed] [Google Scholar]
  12. Herrmann T. R., Rayfield G. W. The electrical response to light of bacteriorhodopsin in planar membranes. Biophys J. 1978 Feb;21(2):111–125. doi: 10.1016/S0006-3495(78)85512-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heyn M. P., Cherry R. J., Müller U. Transient and linear dichroism studies on bacteriorhodopsin: determination of the orientation of the 568 nm all-trans retinal chromophore. J Mol Biol. 1977 Dec 15;117(3):607–620. doi: 10.1016/0022-2836(77)90060-2. [DOI] [PubMed] [Google Scholar]
  14. Hwang S. B., Korenbrot J. I., Stoeckenius W. Proton transport by bacteriorhodopsin through an interface film. J Membr Biol. 1977 Sep 14;36(2-3):137–158. doi: 10.1007/BF01868148. [DOI] [PubMed] [Google Scholar]
  15. Hwang S. B., Korenbrot J. I., Stoeckenius W. Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates. Biochim Biophys Acta. 1978 May 18;509(2):300–317. doi: 10.1016/0005-2736(78)90049-4. [DOI] [PubMed] [Google Scholar]
  16. Korenstein R., Hess B. Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature. 1977 Nov 10;270(5633):184–186. doi: 10.1038/270184a0. [DOI] [PubMed] [Google Scholar]
  17. Korenstein R., Hess B. Immobilization of bacteriorhodopsin and orientation of its transition moment in purple membrane. FEBS Lett. 1978 May 1;89(1):15–20. doi: 10.1016/0014-5793(78)80512-2. [DOI] [PubMed] [Google Scholar]
  18. Korenstein R., Sherman W. V., Caplan S. R. Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin. Biophys Struct Mech. 1976 Dec 22;2(3):267–276. doi: 10.1007/BF00535372. [DOI] [PubMed] [Google Scholar]
  19. Lanyi J. K. Light energy conversion in Halobacterium halobium. Microbiol Rev. 1978 Dec;42(4):682–706. doi: 10.1128/mr.42.4.682-706.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagy K. Photoelectric activity of dried, oriented layers of purple membrane from Halobacterium halobium. Biochem Biophys Res Commun. 1978 Nov 14;85(1):383–390. doi: 10.1016/s0006-291x(78)80054-0. [DOI] [PubMed] [Google Scholar]
  22. Oesterhelt D., Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853–2857. doi: 10.1073/pnas.70.10.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  24. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  25. Racker E., Hinkle P. C. Effect of temperature on the function of a proton pump. J Membr Biol. 1974;17(2):181–188. doi: 10.1007/BF01870178. [DOI] [PubMed] [Google Scholar]
  26. Shinar R., Druckmann S., Ottolenghi M., Korenstein R. Electric field effects in bacteriorhodopsin. Biophys J. 1977 Jul;19(1):1–5. doi: 10.1016/S0006-3495(77)85558-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Skulachev V. P. Conversion of light energy into electric energy by bacteriorhodopsin. FEBS Lett. 1976 Apr 15;64(1):23–25. doi: 10.1016/0014-5793(76)80239-6. [DOI] [PubMed] [Google Scholar]
  28. Stoeckenius W., Lozier R. H. Light energy conversion in Halobacterium halobium. J Supramol Struct. 1974;2(5-6):769–774. doi: 10.1002/jss.400020519. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES