Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Apr;38(1):29–37. doi: 10.1016/S0006-3495(82)84527-X

Surface viscosity measurements from large bilayer vesicle tether formation. II. Experiments.

R E Waugh
PMCID: PMC1328810  PMID: 7074197

Abstract

A mechanical experiment has been developed that measures an upper bound for the viscosity of a lipid bilayer membrane. In this experiment, strands of membrane (tethers) are formed from phospholipid vesicles attached to micropipettes by subjecting the vesicles to fluid drag. The rate of tether formation is measured as a function of the velocity of the suspending fluid. The surface viscosity can be calculated from this data using a theoretical relationship derived in a companion paper. Because of the multilamellar character of the vesicles, these values provide an upper bound for the viscosity of a single bilayer. The smallest values obtained in these measurements fell in the range 5.0-13.0 x 10(-6) dyn s/cm. These values are in relatively good agreement with the values calculated from lateral and rotational mobility measurements.

Full text

PDF
29

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cherry R. J., Müller U., Schneider G. Rotational diffusion of bacteriorhodopsin in lipid membranes. FEBS Lett. 1977 Aug 15;80(2):465–469. doi: 10.1016/0014-5793(77)80498-5. [DOI] [PubMed] [Google Scholar]
  2. Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  4. Kapitza H. G., Sackmann E. Local measurement of lateral motion in erythrocyte membranes by photobleaching technique. Biochim Biophys Acta. 1980;595(1):56–64. doi: 10.1016/0005-2736(80)90247-3. [DOI] [PubMed] [Google Scholar]
  5. Liebman P. A., Entine G. Lateral diffusion of visual pigment in photorecptor disk membranes. Science. 1974 Aug 2;185(4149):457–459. doi: 10.1126/science.185.4149.457. [DOI] [PubMed] [Google Scholar]
  6. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  7. Schindler M., Osborn M. J., Koppel D. E. Lateral mobility in reconstituted membranes--comparisons with diffusion in polymers. Nature. 1980 Jan 24;283(5745):346–350. doi: 10.1038/283346a0. [DOI] [PubMed] [Google Scholar]
  8. Smith L. M., Parce J. W., Smith B. A., McConnell H. M. Antibodies bound to lipid haptens in model membranes diffuse as rapidly as the lipids themselves. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4177–4179. doi: 10.1073/pnas.76.9.4177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Waugh R. E. Surface viscosity measurements from large bilayer vesicle tether formation. I. Analysis. Biophys J. 1982 Apr;38(1):19–27. doi: 10.1016/S0006-3495(82)84526-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wu E. S., Jacobson K., Szoka F., Portis A., Jr Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry. 1978 Dec 12;17(25):5543–5550. doi: 10.1021/bi00618a033. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES