Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Feb;37(2):465–473. doi: 10.1016/S0006-3495(82)84693-6

Photoelectric currents across planar bilayer membranes containing bacterial reaction centers. Response under conditions of single electron turnover.

N K Packham, P L Dutton, P Mueller
PMCID: PMC1328829  PMID: 6277403

Abstract

Light-induced electric current and potential responses have been measured across planar phospholipid membranes containing reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Under conditions in which the reaction centers are restricted to a single electron turnover, the responses can be correlated with the light-induced electron transfer reactions associated with the reaction center. The results indicate that electron transfer from the bacteriochlorophyll dimer to the primary ubiquinone molecule, and from ferrocytochrome c to the oxidized dimer occur in series across the planar membrane. Electron transfer from the primary to secondary ubiquinone molecule is not electrogenic.

Full text

PDF
465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baccarini Melandri A., Casadio R., Melandri B. A. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons. Eur J Biochem. 1977 Sep;78(2):389–402. doi: 10.1111/j.1432-1033.1977.tb11751.x. [DOI] [PubMed] [Google Scholar]
  2. Barsky E. L., Dancshazy Z., Drachey L. A., Il'ina M. D., Jasaitis A. A., Kondrashin A. A., Samuilov V. D., Skulachev V. P. Reconstitution of biological molecular generators of electric current. Bacteriochlorophyll and plant chlorophyll complexes. J Biol Chem. 1976 Nov 25;251(22):7066–7071. [PubMed] [Google Scholar]
  3. Blankenship R. E., Parson W. W. The involvement of iron and ubiquinone in electron transfer reactions mediated by reaction centers from photosynthetic bacteria. Biochim Biophys Acta. 1979 Mar 15;545(3):429–444. doi: 10.1016/0005-2728(79)90152-x. [DOI] [PubMed] [Google Scholar]
  4. Clayton R. K., Szuts E. Z., Fleming H. Photochemical electron transport oin photosynthetic reaction centers from Rhodopseudomonas spheroides. 3. Effects of orthophenanthroline and other chemicals. Biophys J. 1972 Jan;12(1):64–79. doi: 10.1016/s0006-3495(72)86071-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clayton R. K., Yau H. F. Photochemical electron transport in photosynthetic reaction centers from Rhodopseudomonas spheroides. I. Kinetics of the oxidation and reduction of P-870 as affected by external factors. Biophys J. 1972 Jul;12(7):867–881. doi: 10.1016/S0006-3495(72)86130-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAS M. L., CRANE F. L. PROTEOLIPIDS. I. FORMATION OF PHOSPHOLIPID-CYTOCHROME C COMPLEXES. Biochemistry. 1964 May;3:696–700. doi: 10.1021/bi00893a017. [DOI] [PubMed] [Google Scholar]
  7. Drachev L. A., Frolov V. N., Kaulen A. D., Kondrashin A. A., Samuilov V. D., Semenov A. Y., Skulachev V. P. Generation of electric current by chromatophores of Rhodospirillum rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes. Biochim Biophys Acta. 1976 Sep 13;440(3):637–660. doi: 10.1016/0005-2728(76)90048-7. [DOI] [PubMed] [Google Scholar]
  8. Jackson J. B., Crofts A. R. The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 1969 Aug;4(3):185–189. doi: 10.1016/0014-5793(69)80230-9. [DOI] [PubMed] [Google Scholar]
  9. Jackson J. B., Crofts A. R. The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur J Biochem. 1971 Jan 1;18(1):120–130. doi: 10.1111/j.1432-1033.1971.tb01222.x. [DOI] [PubMed] [Google Scholar]
  10. Jackson J. B., Dutton P. L. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling. Biochim Biophys Acta. 1973 Oct 19;325(1):102–113. doi: 10.1016/0005-2728(73)90155-2. [DOI] [PubMed] [Google Scholar]
  11. Kendall-Tobias M. W., Celis H., Almanza de Celis S., Crofts A. R. Hexane-solubilised reaction centre proteolipid complexes of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1981 May 13;635(3):585–601. doi: 10.1016/0005-2728(81)90116-x. [DOI] [PubMed] [Google Scholar]
  12. Pachence J. M., Dutton P. L., Blasie J. K. Structural studies on reconstituted reaction center-phosphatidylcholine membranes. Biochim Biophys Acta. 1979 Nov 8;548(2):348–373. doi: 10.1016/0005-2728(79)90141-5. [DOI] [PubMed] [Google Scholar]
  13. Packham N. K., Berriman J. A., Jackson J. B. The charging capacitance of the chromatophore membrane. FEBS Lett. 1978 May 15;89(2):205–210. doi: 10.1016/0014-5793(78)80218-x. [DOI] [PubMed] [Google Scholar]
  14. Packham N. K., Greenrod J. A., Jackson J. B. Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata. Biochim Biophys Acta. 1980 Aug 5;592(1):130–142. doi: 10.1016/0005-2728(80)90120-6. [DOI] [PubMed] [Google Scholar]
  15. Packham N. K., Packham C., Mueller P., Tiede D. M., Dutton P. L. Reconstitution of photochemically active reaction centers in planar phospholipid membranes. Light-induced electrical currents under voltage-clamped conditions. FEBS Lett. 1980 Jan 28;110(1):101–106. doi: 10.1016/0014-5793(80)80033-0. [DOI] [PubMed] [Google Scholar]
  16. Parson W. W., Case G. D. In Chromatium, a single photochemical reaction center oxidizes both cytochrome C552 and cytochrome C555. Biochim Biophys Acta. 1970;205(2):232–245. doi: 10.1016/0005-2728(70)90253-7. [DOI] [PubMed] [Google Scholar]
  17. Prince R. C., Dutton P. L. The primary acceptor of bacterial photosynthesis: its operating midpoint potential? Arch Biochem Biophys. 1976 Feb;172(2):329–334. doi: 10.1016/0003-9861(76)90084-9. [DOI] [PubMed] [Google Scholar]
  18. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  19. Schönfeld M., Montal M., Feher G. Functional reconstitution of photosynthetic reaction centers in planar lipid bilayers. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6351–6355. doi: 10.1073/pnas.76.12.6351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schönfeld M., Montal M., Feher G. Reaction center--phospholipid complex in organic solvents: formation and properties. Biochemistry. 1980 Apr 15;19(8):1535–1542. doi: 10.1021/bi00549a001. [DOI] [PubMed] [Google Scholar]
  21. Straley S. C., Parson W. W., Mauzerall D. C., Clayton R. K. Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas spheroides. Biochim Biophys Acta. 1973 Jun 28;305(3):597–609. doi: 10.1016/0005-2728(73)90079-0. [DOI] [PubMed] [Google Scholar]
  22. Takamiya K., Dutton P. L. The influence of transmembrane potentials of the redox equilibrium between cytochrome c2 and the reaction center in Rhodopseudomonas sphaeroides chromatophores. FEBS Lett. 1977 Aug 15;80(2):279–284. doi: 10.1016/0014-5793(77)80457-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES