Abstract
In the presence of certain macromolecules, such as fibrinogen, immunoglobulin, dextran, and polylysine, erythrocytes tend to aggregate and form cylindrical clusters called "rouleaux" in which cells resemble coins in a stack. The aggregates may remain cylindrical or they may branch, forming tree, and networklike structures. Using the law of mass action and notions from polymer chemistry, we derive expressions describing the kinetics of the early phase of aggregation. Our models generalize work initiated by Ponder in 1927 who used the Smoluchowski equation to predict the concentration of rouleaux of different sizes. There are two novel features to our generalization. First, we allow erythrocytes that collide near the end of a stack of cells to move to the end of the cylinder and elongate it. Second, we incorporate geometric information into our models and describe the kinetics of branched rouleau formation. From our models we can predict the concentration of rouleaux with n cells and b branches, the mean number of cells per rouleau, the mean number of branches per rouleau, and the average length of a branch. Comparisons are made with the available experimental data.
Full text
PDF





















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell G. I. Estimate of the sticking probability for cells in uniform shear flow with adhesion caused by specific bonds. Cell Biophys. 1981 Sep;3(3):289–304. doi: 10.1007/BF02782629. [DOI] [PubMed] [Google Scholar]
- Brooks D. E., Seaman G. V. Some effects of dextran on human erythrocyte interactions. Bibl Anat. 1973;11:272–280. [PubMed] [Google Scholar]
- Chang H. N., Robertson C. R. Platelet aggregation by laminar shear and Brownian motion. Ann Biomed Eng. 1976 Jun;4(2):151–183. doi: 10.1007/BF02363645. [DOI] [PubMed] [Google Scholar]
- Chien S., Jan K. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc Res. 1973 Mar;5(2):155–166. doi: 10.1016/0026-2862(73)90068-x. [DOI] [PubMed] [Google Scholar]
- Chien S., King R. G., Skalak R., Usami S., Copley A. L. Viscoelastic properties of human blood and red cell suspensions. Biorheology. 1975 Oct;12(6):341–346. doi: 10.3233/bir-1975-12603. [DOI] [PubMed] [Google Scholar]
- Chien S., Sung L. A., Kim S., Burke A. M., Usami S. Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc Res. 1977 May;13(3):327–333. doi: 10.1016/0026-2862(77)90098-x. [DOI] [PubMed] [Google Scholar]
- Chien S., Usami S., Dellenback R. J., Gregersen M. I., Nanninga L. B., Guest M. M. Blood viscosity: influence of erythrocyte aggregation. Science. 1967 Aug 18;157(3790):829–831. doi: 10.1126/science.157.3790.829. [DOI] [PubMed] [Google Scholar]
- Dintenfass L. Blood viscosity factors in severe nondiabetic and diabetic retinopathy. Biorheology. 1977;14(4):151–157. doi: 10.3233/bir-1977-14401. [DOI] [PubMed] [Google Scholar]
- Dintenfass L., Forbes C. D. About increase of aggregation of red cells with an increase of temperature in normal and abnormal blood (i.e. cancer). Effect of ABO blood groups and proteins. Biorheology. 1973 Sep;10(3):383–391. doi: 10.3233/bir-1973-10312. [DOI] [PubMed] [Google Scholar]
- Dintenfass L., Somer T. On the aggregation of red cells in Waldenström's macroglobulinaemia and multiple myeloma. Microvasc Res. 1975 May;9(3):279–286. doi: 10.1016/0026-2862(75)90064-3. [DOI] [PubMed] [Google Scholar]
- Evans E., Fung Y. C. Improved measurements of the erythrocyte geometry. Microvasc Res. 1972 Oct;4(4):335–347. doi: 10.1016/0026-2862(72)90069-6. [DOI] [PubMed] [Google Scholar]
- Fukada E., Kaibara M. Viscoelastic study of aggregation of red blood cells. Biorheology. 1980;17(1-2):177–182. doi: 10.3233/bir-1980-171-219. [DOI] [PubMed] [Google Scholar]
- Fung J. S., Canham P. B. The mode and kinetics of the human red cell doublet formation. Biorheology. 1974 Jul;11(4):241–251. doi: 10.3233/bir-1974-11404. [DOI] [PubMed] [Google Scholar]
- Huang C. R., Siskovic N., Robertson R. W., Fabisiak W., Smitherberg E. H., Copley A. L. Quantitative characterization of thixotropy of whole human blood. Biorheology. 1975 Aug;12(5):279–282. doi: 10.3233/bir-1975-12505. [DOI] [PubMed] [Google Scholar]
- Jan K. M., Chien S. Influence of the ionic composition of fluid medium on red cell aggregation. J Gen Physiol. 1973 May;61(5):655–668. doi: 10.1085/jgp.61.5.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan K. M., Chien S. Role of surface electric charge in red blood cell interactions. J Gen Physiol. 1973 May;61(5):638–654. doi: 10.1085/jgp.61.5.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan K. M., Chien S. Role of the electrostatic repulsive force in red cell interactions. Bibl Anat. 1973;11:281–288. [PubMed] [Google Scholar]
- Jan K. M. Role of hydrogen bonding in red cell aggregation. J Cell Physiol. 1979 Oct;101(1):49–55. doi: 10.1002/jcp.1041010107. [DOI] [PubMed] [Google Scholar]
- Jan K. Red cell interactions in macromolecular suspension. Biorheology. 1979;16(3):137–148. doi: 10.3233/bir-1979-16302. [DOI] [PubMed] [Google Scholar]
- Jones M. N., Perry R. The kinetics of cellular aggregation induced by turbulent flow. J Theor Biol. 1979 Nov 7;81(1):75–89. doi: 10.1016/0022-5193(79)90082-1. [DOI] [PubMed] [Google Scholar]
- KATCHALSKY A., DANON D., NEVO A. Interactions of basic polyelectrolytes with the red blood cell. II. Agglutination of red blood cells by polymeric bases. Biochim Biophys Acta. 1959 May;33(1):120–138. doi: 10.1016/0006-3002(59)90505-0. [DOI] [PubMed] [Google Scholar]
- Kernick D., Jay A. W., Rowlands S., Skibo L. Experiments on Rouleu formation. Can J Physiol Pharmacol. 1973 Sep;51(9):690–699. doi: 10.1139/y73-105. [DOI] [PubMed] [Google Scholar]
- Merrill E. W., Cheng C. S., Pelletier G. A. Yield stress of normal human blood as a function of endogenous fibrinogen. J Appl Physiol. 1969 Jan;26(1):1–3. doi: 10.1152/jappl.1969.26.1.1. [DOI] [PubMed] [Google Scholar]
- Perelson A. S., Wiegel F. W. The equilibrium size distribution of rouleaux. Biophys J. 1982 Feb;37(2):515–522. doi: 10.1016/S0006-3495(82)84697-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson P. D. Letter: Effect of blood flow velocity on growth rate of platelet thrombi. Nature. 1973 Sep 14;245(5420):103–104. doi: 10.1038/245103a0. [DOI] [PubMed] [Google Scholar]
- Ryan V., Hart T. R., Schiller R. Laser light scattering measurement of dextran-induced Streptococcus mutans aggregation. Biophys J. 1980 Jul;31(1):113–125. doi: 10.1016/S0006-3495(80)85043-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usami S., King R. G., Chien S., Skalak R., Huang C. R., Copley A. L. Microcinephotographic studies on red cell aggregation in steady and oscillatory shear--a note. Biorheology. 1975 Aug;12(5):323–325. doi: 10.3233/bir-1975-12511. [DOI] [PubMed] [Google Scholar]
- Volger E., Schmid-Schönbein H., Klose H. J. Rheological studies on the kinetics of artificial red cell aggregation induced by dextrans. Bibl Anat. 1973;11:83–90. [PubMed] [Google Scholar]



