Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Mar;37(3):647–656.

Identification of the scattering elements responsible for lens opacification in cold cataracts.

M Delaye, J I Clark, G B Benedek
PMCID: PMC1328850  PMID: 7074190

Abstract

Using both quasi-elastic light scattering spectroscopy and angular dissymmetry in the intensity of the scattered light, we examined the onset of turbidity for intact calf lenses and for isolated nuclear cytoplasm. In the case of the nuclear cytoplasm these measurements demonstrate the presence of two kinds of scatterers: small units of approximately 100-A radius and larger elements whose size is distributed around 1,500 A. As the temperature is decreased towards the cold cataract temperature, the intensity of light scattered by the small units stays almost constant while the intensity scattered by the large elements increase very strongly. The opacification of the lens cytoplasm produced by decreasing the temperature results principally from an increase in the concentration of the large scattering elements. For the intact nucleus the situation is qualitatively similar, but the mean size of the large scattering elements shows a more substantial increase than in the isolated cytoplasm as temperature is lowered towards the cold cataract temperature.

Full text

PDF
647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bettelheim F. A., Siew E. L., Chylack L. T., Jr Studies on human cataracts. III. Structural elements in nuclear cataracts and their contribution to the turbidity. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):348–354. [PubMed] [Google Scholar]
  2. Clark J. I., Benedek G. B. Phase diagram for cell cytoplasm from the calf lens. Biochem Biophys Res Commun. 1980 Jul 16;95(1):482–489. doi: 10.1016/0006-291x(80)90763-9. [DOI] [PubMed] [Google Scholar]
  3. Clark J. I., Benedek G. B. The effects of glycols, aldehydes, and acrylamide on phase separation and opacification in the calf lens. Invest Ophthalmol Vis Sci. 1980 Jul;19(7):771–776. [PubMed] [Google Scholar]
  4. Delaye M., Clark J. I., Benedek G. B. Coexistence curves for the phase separation in the calf lens cytoplasm. Biochem Biophys Res Commun. 1981 May 29;100(2):908–914. doi: 10.1016/s0006-291x(81)80259-8. [DOI] [PubMed] [Google Scholar]
  5. Hamai Y., Fukui H. N., Kuwabara T. Morphology of hereditary mouse cataract. Exp Eye Res. 1974 Jun;18(6):537–546. doi: 10.1016/0014-4835(74)90060-8. [DOI] [PubMed] [Google Scholar]
  6. Ishimoto C., Goalwin P. W., Sun S. T., Nishio I., Tanaka T. Cytoplasmic phase separation in formation of galactosemic cataract in lenses of young rats. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4414–4416. doi: 10.1073/pnas.76.9.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iwata S., Kinoshita J. H. Mechanism of development of hereditary cataract in mice. Invest Ophthalmol. 1971 Jul;10(7):504–512. [PubMed] [Google Scholar]
  8. Jedziniak J. A., Kinoshita J. H., Yates E. M., Benedek G. B. The concentration and localization of heavy molecular weight aggregates in aging normal and cataractous human lenses. Exp Eye Res. 1975 Apr;20(4):367–369. doi: 10.1016/0014-4835(75)90118-9. [DOI] [PubMed] [Google Scholar]
  9. Jedziniak J. A., Kinoshita J. H., Yates E. M., Hocker L. O., Benedek G. B. Calcium-induced aggregation of bovine lens alpha crystallins. Invest Ophthalmol. 1972 Nov;11(11):905–915. [PubMed] [Google Scholar]
  10. Jedziniak J. A., Nicoli D. F., Baram H., Benedek G. B. Quantitative verification of the existence of high molecular weight protein aggregates in the intact normal human lens by light-scattering spectroscopy. Invest Ophthalmol Vis Sci. 1978 Jan;17(1):51–57. [PubMed] [Google Scholar]
  11. Kinoshita J. H. Cataracts in galactosemia. The Jonas S. Friedenwald Memorial Lecture. Invest Ophthalmol. 1965 Oct;4(5):786–799. [PubMed] [Google Scholar]
  12. Kuck J. F., Jr The transport and phosphorylation of 2-deoxyglucose by rat lenses. Exp Eye Res. 1973 Feb;15(2):245–248. doi: 10.1016/0014-4835(73)90125-5. [DOI] [PubMed] [Google Scholar]
  13. Siezen R. J., Berger H. The quaternary structure of bovine alpha-crystallin. Size and shape studies by sedimentation, small-angle X-ray scattering and quasi-elastic light scattering. Eur J Biochem. 1978 Nov 15;91(2):397–405. doi: 10.1111/j.1432-1033.1978.tb12692.x. [DOI] [PubMed] [Google Scholar]
  14. Siezen R. J., Bindels J. G., Hoenders H. J. The interrelationship between monomeric, oligomeric and polymeric alpha-crystallin in the calf lens nucleus. Exp Eye Res. 1979 May;28(5):551–567. doi: 10.1016/0014-4835(79)90043-5. [DOI] [PubMed] [Google Scholar]
  15. Tanaka T., Benedek G. B. Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Invest Ophthalmol. 1975 Jun;14(6):449–456. [PubMed] [Google Scholar]
  16. ZIGMAN S., LERMAN S. PROPERTIES OF A COLD-PRECIPITABLE PROTEIN FRACTION IN THE LENS. Exp Eye Res. 1965 Mar;4:24–30. doi: 10.1016/s0014-4835(65)80005-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES