Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Jun;38(3):231–236. doi: 10.1016/S0006-3495(82)84553-0

Significance and mechanism of divalent-ion binding to transfer RNA.

M Guéron, J L Leroy
PMCID: PMC1328863  PMID: 7104436

Abstract

Phosphorus NMR shows that divalent ions (manganese) bind to tRNA phosphates as to those of DNA or isolated phosphodiesters. The time for dissociation of a phosphate-divalent ion complex is in the microsecond range. For no single phosphate is the affinity to divalent ions greater than 10 times that of the average phosphate. It is often stated that a small number of strong binding sites exist and are structurally and functionally important. This concept originates from binding curves whose properties should, instead, be traced to the polyelectrolyte nature of nucleic acids. The 31P NMR data preclude the existence of strong sites to which divalent ions would bind very selectively. The Spectroscopic and crystallographic observations of sites for divalent ions do not in fact demonstrate selective binding to these sites.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chao Y. Y., Kearns D. R. Manganese(II) as a paramagnetic probe of the tertiary structure of transfer RNA. Biochim Biophys Acta. 1977 Jul 5;477(1):20–27. doi: 10.1016/0005-2787(77)90157-5. [DOI] [PubMed] [Google Scholar]
  2. Cohn M., Danchin A., Grunberg-Manago M. Proton magnetic relaxation studies of marganous complexes of transfer RNA and related compounds. J Mol Biol. 1969 Jan 14;39(1):199–217. doi: 10.1016/0022-2836(69)90342-8. [DOI] [PubMed] [Google Scholar]
  3. Danchin A., Guéron M. Cooperative binding of manganese (II) to transfer RNA. Eur J Biochem. 1970 Nov;16(3):532–536. doi: 10.1111/j.1432-1033.1970.tb01113.x. [DOI] [PubMed] [Google Scholar]
  4. Early T. A., Kearns D. R. 1H nuclear magnetic resonance investigation of flexibility in DNA. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4165–4169. doi: 10.1073/pnas.76.9.4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehrlich R., Lefevre J. F., Remy P. Fluorimetric study of the complex between yeast phenylalanyl-tRNA synthetase and tRNA-Phe. 1. Changes in the conformation of the enzyme and tRNA; modification of the Wybutine neighbourhood. Eur J Biochem. 1980 Jan;103(1):145–153. doi: 10.1111/j.1432-1033.1980.tb04298.x. [DOI] [PubMed] [Google Scholar]
  6. Guéron M., Shulman R. G. 31P magnetic resonance of tRNA. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3482–3485. doi: 10.1073/pnas.72.9.3482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hingerty B., Brown R. S., Jack A. Further refinement of the structure of yeast tRNAPhe. J Mol Biol. 1978 Sep 25;124(3):523–534. doi: 10.1016/0022-2836(78)90185-7. [DOI] [PubMed] [Google Scholar]
  8. Hurd R. E., Azhderian E., Reid B. R. Paramagnetic ion effects on the nuclear magnetic resonance spectrum of transfer ribonucleic acid: assignment of the 15--48 tertiary resonance. Biochemistry. 1979 Sep 4;18(18):4012–4017. doi: 10.1021/bi00585a026. [DOI] [PubMed] [Google Scholar]
  9. Hyafil F., Blanquet S. Methionyl-tRNA synthetase from Escherichia coli: substituting magnesium by manganese in the L-methionine activating reaction. Eur J Biochem. 1977 Apr 15;74(3):481–493. doi: 10.1111/j.1432-1033.1977.tb11415.x. [DOI] [PubMed] [Google Scholar]
  10. Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
  11. Johnston P. D., Redfield A. G. Nuclear magnetic resonance and nuclear Overhauser effect study of yeast phenylalanine transfer ribonucleic acid imino protons. Biochemistry. 1981 Mar 3;20(5):1147–1156. doi: 10.1021/bi00508a016. [DOI] [PubMed] [Google Scholar]
  12. Kayne M. S., Cohn M. Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA. Biochemistry. 1974 Sep 24;13(20):4159–4165. doi: 10.1021/bi00717a014. [DOI] [PubMed] [Google Scholar]
  13. Koren R., Mildvan S. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Biochemistry. 1977 Jan 25;16(2):241–249. doi: 10.1021/bi00621a013. [DOI] [PubMed] [Google Scholar]
  14. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Atomic co-ordinates for yeast phenylalanine tRNA. Nucleic Acids Res. 1975 Sep;2(9):1629–1637. doi: 10.1093/nar/2.9.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leroy J. L., Guéron M. Electrostatic effects in divalent ion binding to tRNA. Biopolymers. 1977 Nov;16(11):2429–2446. doi: 10.1002/bip.1977.360161108. [DOI] [PubMed] [Google Scholar]
  16. Leroy J. L., Guéron M., Thomas G., Favre A. Role of divalent ions in folding of tRNA. Eur J Biochem. 1977 Apr 15;74(3):567–574. doi: 10.1111/j.1432-1033.1977.tb11426.x. [DOI] [PubMed] [Google Scholar]
  17. Lövgren T. N., Petersson A., Loftfield R. B. The mechanism of aminoacylation of transfer ribonucleic acid. The role of magnesium and spermine in the synthesis of isoleucyl-tRNA. J Biol Chem. 1978 Oct 10;253(19):6702–6710. [PubMed] [Google Scholar]
  18. Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reuben J., Gabbay E. J. Binding of manganese(II) to DNA and the competitive effects of metal ions and organic cations. An electron paramagnetic resonance study. Biochemistry. 1975 Mar 25;14(6):1230–1235. doi: 10.1021/bi00677a022. [DOI] [PubMed] [Google Scholar]
  20. Römer R., Hach R. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves. Eur J Biochem. 1975 Jun 16;55(1):271–284. doi: 10.1111/j.1432-1033.1975.tb02160.x. [DOI] [PubMed] [Google Scholar]
  21. Salemink P. J., Reijerse E. J., Mollevanger L. C., Hilbers C. W. Conformational changes of yeast tRNAphe as monitored by 31P NMR. Eur J Biochem. 1981 Apr;115(3):635–641. doi: 10.1111/j.1432-1033.1981.tb06249.x. [DOI] [PubMed] [Google Scholar]
  22. Schimmel P. R., Redfield A. G. Transfer RNA in solution: selected topics. Annu Rev Biophys Bioeng. 1980;9:181–221. doi: 10.1146/annurev.bb.09.060180.001145. [DOI] [PubMed] [Google Scholar]
  23. Schreier A. A., Schimmel P. R. Interaction of manganese with fragments, complementary fragment recombinations, and whole molecules of yeast phenylalanine specific transfer RNA. J Mol Biol. 1974 Jul 5;86(3):601–620. doi: 10.1016/0022-2836(74)90183-1. [DOI] [PubMed] [Google Scholar]
  24. Seeman N. C., Rosenberg J. M., Suddath F. L., Kim J. J., Rich A. RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. J Mol Biol. 1976 Jun 14;104(1):109–144. doi: 10.1016/0022-2836(76)90005-x. [DOI] [PubMed] [Google Scholar]
  25. Shulman R. G., Sternlicht H., Wyluda B. J. Study of metal-ion binding to nucleic acids by 31-P nuclear magnetic resonance. J Chem Phys. 1965 Nov 1;43(9):3116–3122. doi: 10.1063/1.1697285. [DOI] [PubMed] [Google Scholar]
  26. Stein A., Crothers D. M. Equilibrium binding of magnesium(II) by Escherichia coli tRNAfMet. Biochemistry. 1976 Jan 13;15(1):157–160. doi: 10.1021/bi00646a024. [DOI] [PubMed] [Google Scholar]
  27. Walters J. A., Geerdes H. A., Hilbers C. W. On the binding of Mg2+ and Mn2+ to tRNA. Biophys Chem. 1977 Sep;7(2):147–151. doi: 10.1016/0301-4622(77)80007-0. [DOI] [PubMed] [Google Scholar]
  28. Wolfson J. M., Kearns D. R. Letter: Europium as a fluorescent probe of metal binding sites on transfer ribonucleic acid. I. Binding to Escherichia coli formylmethionine transfer ribonucleic acid. J Am Chem Soc. 1974 May 29;96(11):3653–3654. doi: 10.1021/ja00818a052. [DOI] [PubMed] [Google Scholar]
  29. Zimmerman T. P., Robison B. Effect of assay conditions on the magnesium requirement of the transfer reaction catalyzed by phenylalanyl-tRNA synthetase from bakers' yeast. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1138–1143. doi: 10.1016/0006-291x(72)90953-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES