Abstract
A new nuclear magnetic resonance (NMR) method for monitoring transmembrane metal cation transport is reported. It is illustrated with a study of Na+ efflux from Na+-rich yeast cells. The technique involves the use of an anionic paramagnetic shift reagent, present only outside the cells, to induce a splitting of the sodium-23 NMR peak, in this case, into components representing intra- and extracellular Na+. The time course of the efflux is in good agreement with the literature and can be well fitted with a double exponential decay expression. Splitting of the lithium-7 NMR signal from a suspension of Li+-rich respiratory-deficient, petite yeasts is also reported.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asensio J., Ruiz-Argüeso T., Rodríguez-Navarro A. Sensitivity of yeasts to lithium. Antonie Van Leeuwenhoek. 1976;42(1-2):1–8. doi: 10.1007/BF00399443. [DOI] [PubMed] [Google Scholar]
- CIRILLO V. P. Mechanism of glucose transport across the yeast cell membrane. J Bacteriol. 1962 Sep;84:485–491. doi: 10.1128/jb.84.3.485-491.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLayre J. L., Ingwall J. S., Malloy C., Fossel E. T. Gated sodium-23 nuclear magnetic resonance images of an isolated perfused working rat heart. Science. 1981 May 22;212(4497):935–936. doi: 10.1126/science.7233188. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F. The link between metabolism and active transport of sodium in human red cell ghosts. J Membr Biol. 1980 Dec 15;57(2):143–161. doi: 10.1007/BF01869000. [DOI] [PubMed] [Google Scholar]
- Kuo S. C., Yamamoto S. Preparation and growth of yeast protoplasts. Methods Cell Biol. 1975;11:169–183. doi: 10.1016/s0091-679x(08)60321-0. [DOI] [PubMed] [Google Scholar]
- Pike M. M., Simon S. R., Balschi J. A., Springer C. S., Jr High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na. Proc Natl Acad Sci U S A. 1982 Feb;79(3):810–814. doi: 10.1073/pnas.79.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pringle A. T., Forsdyke J., Rose A. H. Scanning electron microscope study of Saccharomyces cerevisiae spheroplast formation. J Bacteriol. 1979 Oct;140(1):289–293. doi: 10.1128/jb.140.1.289-293.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodríguez-Navarro A., Sancho E. D., Pérez-Lloveres C. Energy source for lithium efflux in yeast. Biochim Biophys Acta. 1981 Jan 8;640(1):352–358. doi: 10.1016/0005-2736(81)90558-7. [DOI] [PubMed] [Google Scholar]
- Rothstein A. Relationship of cation influxes and effluxes in yeast. J Gen Physiol. 1974 Nov;64(5):608–621. doi: 10.1085/jgp.64.5.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ting D. Z., Hagan P. S., Chan S. I., Doll J. D., Springer C. S., Jr Nuclear magnetic resonance studies of cation transport across vesicle bilayer membranes. Biophys J. 1981 May;34(2):189–216. doi: 10.1016/S0006-3495(81)84845-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tosteson D. C. Lithium and mania. Sci Am. 1981 Apr;244(4):164-6, 168, 171-2 et passim. doi: 10.1038/scientificamerican0481-164. [DOI] [PubMed] [Google Scholar]
- Yeh H. J., Brinley F. J., Jr, Becker E. D. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle. Biophys J. 1973 Jan;13(1):56–71. doi: 10.1016/S0006-3495(73)85969-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
