Abstract
By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COLE K. S. ELECTRODIFFUSION MODELS FOR THE MEMBRANE OF SQUID GIANT AXON. Physiol Rev. 1965 Apr;45:340–379. doi: 10.1152/physrev.1965.45.2.340. [DOI] [PubMed] [Google Scholar]
- Chizmadjev Y. A., Aityan S. K. Ion transport across sodium channels in biological membranes. J Theor Biol. 1977 Feb 7;64(3):429–453. doi: 10.1016/0022-5193(77)90281-8. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. L. Studies in irreversible thermodynamics. IV. Diagrammatic representation of steady state fluxes for unimolecular systems. J Theor Biol. 1966 Apr;10(3):442–459. doi: 10.1016/0022-5193(66)90137-8. [DOI] [PubMed] [Google Scholar]
- Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hägglund J. V., Sandblom J. P. The kinetic behavior of the potassium channel in nerve membrane: a single-ion electrodiffusion process. TIT J Life Sci. 1972;2(4):107–119. [PubMed] [Google Scholar]
- Levitt D. G. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. Biophys J. 1978 May;22(2):221–248. doi: 10.1016/S0006-3495(78)85486-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Läuger P. Ion transport through pores: a rate-theory analysis. Biochim Biophys Acta. 1973 Jul 6;311(3):423–441. doi: 10.1016/0005-2736(73)90323-4. [DOI] [PubMed] [Google Scholar]
- Mikulecky D. C. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit. Biophys J. 1979 Feb;25(2 Pt 1):323–339. doi: 10.1016/s0006-3495(79)85295-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikulecky D. C. A simple network thermodynamic method for series-parallel coupled flows: II. The non-linear theory, with applications to coupled solute and volume flow in a series membrane. J Theor Biol. 1977 Dec 7;69(3):511–541. doi: 10.1016/0022-5193(77)90154-0. [DOI] [PubMed] [Google Scholar]
- Mikulecky D. C., Wiegand W. A., Shiner J. S. A simple network thermodynamic method for modeling series-parallel coupled flows. I. The linear case. J Theor Biol. 1977 Dec 7;69(3):471–510. doi: 10.1016/0022-5193(77)90153-9. [DOI] [PubMed] [Google Scholar]
- Oster G. F., Perelson A. S., Katchalsky A. Network thermodynamics: dynamic modelling of biophysical systems. Q Rev Biophys. 1973 Feb;6(1):1–134. doi: 10.1017/s0033583500000081. [DOI] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B. Ion transport in the simplest single file pore. Biochim Biophys Acta. 1979 Jul 5;554(2):410–429. doi: 10.1016/0005-2736(79)90381-x. [DOI] [PubMed] [Google Scholar]
- Wyatt J. L., Jr Network representation of reaction--diffusion systems far from equilibrium. Comput Programs Biomed. 1978 Sep;8(3-4):180–195. doi: 10.1016/0010-468x(78)90026-0. [DOI] [PubMed] [Google Scholar]
