Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Nov;40(2):129–135. doi: 10.1016/S0006-3495(82)84467-6

Lateral diffusion of gramicidin C in phospholipid multibilayers. Effects of cholesterol and high gramicidin concentration.

D W Tank, E S Wu, P R Meers, W W Webb
PMCID: PMC1328985  PMID: 6184082

Abstract

We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.

Full text

PDF
129

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chapman D., Cornell B. A., Ellasz A. W., Perry A. Interactions of helical polypepetide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system. J Mol Biol. 1977 Jul 5;113(3):517–538. doi: 10.1016/0022-2836(77)90236-4. [DOI] [PubMed] [Google Scholar]
  3. Eichberg J., Hess H. H. The lipid composition of frog retinal rod outer segments. Experientia. 1967 Dec 15;23(12):993–994. doi: 10.1007/BF02136402. [DOI] [PubMed] [Google Scholar]
  4. Freire E., Snyder B. Quantitative characterization of the lateral distribution of membrane proteins within the lipid bilayer. Biophys J. 1982 Mar;37(3):617–624. [PMC free article] [PubMed] [Google Scholar]
  5. Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Koeppe R. E., 2nd, Berg J. M., Hodgson K. O., Stryer L. Gramicidin A crystals contain two cation binding sites per channel. Nature. 1979 Jun 21;279(5715):723–725. doi: 10.1038/279723a0. [DOI] [PubMed] [Google Scholar]
  7. Pepinsky R. B., Feigenson G. W. Purification of gramicidin C. Anal Biochem. 1978 Jun 1;86(2):512–518. doi: 10.1016/0003-2697(78)90776-5. [DOI] [PubMed] [Google Scholar]
  8. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  9. Rice D., Oldfield E. Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A'. Biochemistry. 1979 Jul 24;18(15):3272–3279. doi: 10.1021/bi00582a012. [DOI] [PubMed] [Google Scholar]
  10. Rubenstein J. L., Smith B. A., McConnell H. M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc Natl Acad Sci U S A. 1979 Jan;76(1):15–18. doi: 10.1073/pnas.76.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sheetz M. P., Schindler M., Koppel D. E. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature. 1980 Jun 12;285(5765):510–511. doi: 10.1038/285510a0. [DOI] [PubMed] [Google Scholar]
  13. Smith L. M., Rubenstein J. L., Parce J. W., McConnell H. M. Lateral diffusion of M-13 coat protein in mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1980 Dec 9;19(25):5907–5911. doi: 10.1021/bi00566a037. [DOI] [PubMed] [Google Scholar]
  14. Smith L. M., Smith B. A., McConnell H. M. Lateral diffusion of M-13 coat protein in model membranes. Biochemistry. 1979 May 29;18(11):2256–2259. doi: 10.1021/bi00578a019. [DOI] [PubMed] [Google Scholar]
  15. Snyder B., Freire E. Compositional domain structure in phosphatidylcholine--cholesterol and sphingomyelin--cholesterol bilayers. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4055–4059. doi: 10.1073/pnas.77.7.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tank D. W., Wu E. S., Webb W. W. Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol. 1982 Jan;92(1):207–212. doi: 10.1083/jcb.92.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vaz W. L., Jacobson K., Wu E. S., Derzko Z. Lateral mobility of an amphipathic apolipoprotein, ApoC-III, bound to phosphatidylcholine bilayers with and without cholesterol. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5645–5649. doi: 10.1073/pnas.76.11.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Veatch W. R., Blout E. R. Preparation and properties of O-dansyltyrosine gramicidin C. Biochemistry. 1976 Jul 13;15(14):3026–3030. doi: 10.1021/bi00659a014. [DOI] [PubMed] [Google Scholar]
  20. Veatch W. R., Mathies R., Eisenberg M., Stryer L. Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J Mol Biol. 1975 Nov 25;99(1):75–92. doi: 10.1016/s0022-2836(75)80160-4. [DOI] [PubMed] [Google Scholar]
  21. Waldbillig R. C., Szabo G. Planar bilayer membranes from pure lipids. Biochim Biophys Acta. 1979 Nov 2;557(2):295–305. doi: 10.1016/0005-2736(79)90328-6. [DOI] [PubMed] [Google Scholar]
  22. Webb W. W., Barak L. S., Tank D. W., Wu E. S. Molecular mobility on the cell surface. Biochem Soc Symp. 1981;(46):191–205. [PubMed] [Google Scholar]
  23. Webb W. W. Luminescence measurements of macromolecular mobility. Ann N Y Acad Sci. 1981;366:300–314. doi: 10.1111/j.1749-6632.1981.tb20763.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES