Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Dec;40(3):185–198. doi: 10.1016/S0006-3495(82)84474-3

Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers.

C O Lee, M Dagostino
PMCID: PMC1328995  PMID: 7183333

Abstract

Intracellular Na ion activity (aiNa) and twitch tension (T) of constantly driven (1 Hz) canine cardiac Purkinje fibers were measured simultaneously and continuously with neutral carrier Na+-selective microelectrodes and a force transducer. The aiNa of 8.9 +/- 1.4 mM (mean +/- SD, n = 52) was obtained in the driven fibers perfused with normal Tyrode solution. Temporary interruption of stimulation showed that aiNa of the driven fibers was approximately 1.5 mM greater than that of quiescent fibers. The constantly driven fibers were exposed to strophanthidin of 10(-8), 5 X 10(-8), 10(-7), 5 X 10(-7), and 10(-6) M for 5 min. No detectable changes in aiNa and T were observed in the fibers exposed to 10(-8) M strophanthidin, and the threshold concentration of the strophanthidin effect appeared to be approximately 5 X 10(-8) M. With concentrations greater than 5 X 10(-8) M, strophanthidin produced dose-dependent increases in aiNa and T. An increase in aiNa always accompanied an increase in T and after strophanthidin exposure both aiNa and T recovered completely. During onset and recovery periods of the strophanthidin effect the time course of change in aiNa was similar to that of change in T. A plot of T vs. aiNa during the onset and recovery periods showed a linear relationship between T and aiNa. These results indicate strongly that the positive inotropic effect of strophanthidin is closely associated with the increase in aiNa. Raising [K+]0 from 5.4 to 10.8 mM produced decreases in aiNa and T, and restoration of [K+]0 resulted in recoveries of aiNa and T. During the changes of [K+]0 the time course of change in aiNa was similar to that of the change in T. A steady-state sarcoplasmic Ca ion activity (aiCa) of 112 +/- 31 nM (mean +/- SD, n = 17) was obtained in the driven fibers with the use of neutral carrier Ca2+-selective microelectrodes. Temporary interruption produced 10-30% decreases in aiCa. No detectable changes in aiCa were observed in the fibers exposed to strophanthidin of 10(-7) M or less; 5 X 10(-7) and 10(-6) M strophanthidin produced 1.3-1.6 and 2-3-fold increases in aiCa, respectively. This result is consistent with the hypothesis that an increase in aiNa produces an increase in aiCa, which enhances Ca accumulation in the intracellular stores.

Full text

PDF
185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry W. H., Biedert S., Miura D. S., Smith T. W. Changes in cellular Na+, K+, and Ca2+ contents, monovalent cation transport rate, and contractile state during washout of cardiac glycosides from cultured chick heart cells. Circ Res. 1981 Jul;49(1):141–149. doi: 10.1161/01.res.49.1.141. [DOI] [PubMed] [Google Scholar]
  2. Cohen C. J., Fozzard H. A., Sheu S. S. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res. 1982 May;50(5):651–662. doi: 10.1161/01.res.50.5.651. [DOI] [PubMed] [Google Scholar]
  3. Dagostino M., Lee C. O. Neutral carrier Na+- and Ca2+-selective microelectrodes for intracellular application. Biophys J. 1982 Dec;40(3):199–207. doi: 10.1016/S0006-3495(82)84475-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahl G., Isenberg G. Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol. 1980 Mar 31;53(1):63–75. doi: 10.1007/BF01871173. [DOI] [PubMed] [Google Scholar]
  5. Deitmer J. W., Ellis D. The intracellular sodium activity of cardiac Purkinje fibres during inhibition and re-activation of the Na-K pump. J Physiol. 1978 Nov;284:241–259. doi: 10.1113/jphysiol.1978.sp012539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisner D. A., Lederer W. J. Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. J Physiol. 1980 Jun;303:441–474. doi: 10.1113/jphysiol.1980.sp013298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisner D. A., Lederer W. J. The relationship between sodium pump activity and twitch tension in cardiac Purkinje fibres. J Physiol. 1980 Jun;303:475–494. doi: 10.1113/jphysiol.1980.sp013299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The dependence of sodium pumping and tension on intracellular sodium activity in voltage-clamped sheep Purkinje fibres. J Physiol. 1981 Aug;317:163–187. doi: 10.1113/jphysiol.1981.sp013819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The effects of rubidium ions and membrane potentials on the intracellular sodium activity of sheep Purkinje fibres. J Physiol. 1981 Aug;317:189–205. doi: 10.1113/jphysiol.1981.sp013820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis D. The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres. J Physiol. 1977 Dec;273(1):211–240. doi: 10.1113/jphysiol.1977.sp012090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fabiato A., Fabiato F. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci. 1978 Apr 28;307:491–522. doi: 10.1111/j.1749-6632.1978.tb41979.x. [DOI] [PubMed] [Google Scholar]
  12. Fabiato A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol. 1981 Nov;78(5):457–497. doi: 10.1085/jgp.78.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fozzard H. A., Sheu S. S. Intracellular potassium and sodium activities of chick ventricular muscle during embryonic development. J Physiol. 1980 Sep;306:579–586. doi: 10.1113/jphysiol.1980.sp013416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gadsby D. C. Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4035–4039. doi: 10.1073/pnas.77.7.4035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gadsby D. C., Cranefield P. F. Direct measurement of changes in sodium pump current in canine cardiac Purkinje fibers. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1783–1787. doi: 10.1073/pnas.76.4.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gadsby D. C., Niedergerke R., Page S. Do intracellular concentrations of potassium or sodium regulate the strength of the heart beat? Nature. 1971 Aug 27;232(5313):651–653. doi: 10.1038/232651a0. [DOI] [PubMed] [Google Scholar]
  17. Ghysel-Burton J., Godfraind T. Importance of the lactone ring for the action of therapeutic doses of ouabain in guinea-pig atria [proceedings]. J Physiol. 1977 Mar;266(1):75P–76P. [PubMed] [Google Scholar]
  18. Glitsch H. G., Pusch H. Correlation between changes in membrane potential and intracellular sodium activity during K activated response in sheep Purkinje fibres. Pflugers Arch. 1980 Mar;384(2):189–191. doi: 10.1007/BF00584438. [DOI] [PubMed] [Google Scholar]
  19. Grupp G., Grupp I. L., Ghysel-Burton J., Godfraind T., Schwartz A. Effects of very low concentrations of ouabain on contractile force of isolated guinea-pig, rabbit and cat atria and right ventricular papillary muscles: an interinstitutional study. J Pharmacol Exp Ther. 1982 Jan;220(1):145–151. [PubMed] [Google Scholar]
  20. Kline R. P., Cohen I., Falk R., Kupersmith J. Activity-dependent extracellular K+ fluctuations in canine Purkinje fibres. Nature. 1980 Jul 3;286(5768):68–71. doi: 10.1038/286068a0. [DOI] [PubMed] [Google Scholar]
  21. Lee C. O., Fozzard H. A. Activities of potassium and sodium ions in rabbit heart muscle. J Gen Physiol. 1975 Jun;65(6):695–708. doi: 10.1085/jgp.65.6.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee C. O. Ionic activities in cardiac muscle cells and application of ion-selective microelectrodes. Am J Physiol. 1981 Oct;241(4):H459–H478. doi: 10.1152/ajpheart.1981.241.4.H459. [DOI] [PubMed] [Google Scholar]
  23. Lee C. O., Kang D. H., Sokol J. H., Lee K. S. Relation between intracellular Na ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys J. 1980 Feb;29(2):315–330. doi: 10.1016/S0006-3495(80)85135-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee C. O., Uhm D. Y., Dresdner K. Sodium-calcium exchange in rabbit heart muscle cells: direct measurement of sarcoplasmic Ca2+ activity. Science. 1980 Aug 8;209(4457):699–701. doi: 10.1126/science.7394527. [DOI] [PubMed] [Google Scholar]
  25. Lee K. S., Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev. 1971 Sep;23(3):193–261. [PubMed] [Google Scholar]
  26. Marban E., Rink T. J., Tsien R. W., Tsien R. Y. Free calcium in heart muscle at rest and during contraction measured with Ca2+ -sensitive microelectrodes. Nature. 1980 Aug 28;286(5776):845–850. doi: 10.1038/286845a0. [DOI] [PubMed] [Google Scholar]
  27. Noble D. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res. 1980 Sep;14(9):495–514. doi: 10.1093/cvr/14.9.495. [DOI] [PubMed] [Google Scholar]
  28. Okita G. T. Dissociation of Na+,K+-ATPase inhibition from digitalis inotropy. Fed Proc. 1977 Aug;36(9):2225–2230. [PubMed] [Google Scholar]
  29. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  30. Sheu S. S., Korth M., Lathrop D. A., Fozzard H. A. Intra- and extracellular K+ and Na+ activities and resting membrane potential in sheep cardiac purkinje strands. Circ Res. 1980 Nov;47(5):692–700. doi: 10.1161/01.res.47.5.692. [DOI] [PubMed] [Google Scholar]
  31. Thomas R. C. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium. J Physiol. 1969 Apr;201(2):495–514. doi: 10.1113/jphysiol.1969.sp008769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vassalle M. Electrogenic suppression of automaticity in sheep and dog purkinje fibers. Circ Res. 1970 Sep;27(3):361–377. doi: 10.1161/01.res.27.3.361. [DOI] [PubMed] [Google Scholar]
  33. Walker J. L., Brown H. M. Intracellular ionic activity measurements in nerve and muscle. Physiol Rev. 1977 Oct;57(4):729–778. doi: 10.1152/physrev.1977.57.4.729. [DOI] [PubMed] [Google Scholar]
  34. Weingart R., Kass R. S., Tsien R. W. Is digitalis inotropy associated with enhanced slow inward calcium current? Nature. 1978 Jun 1;273(5661):389–392. doi: 10.1038/273389a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES