Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1983 Jan;41(1):87–89. doi: 10.1016/S0006-3495(83)84408-7

Two stable steady states in the Hodgkin-Huxley axons.

K Aihara, G Matsumoto
PMCID: PMC1329016  PMID: 6824756

Abstract

Two stable steady states were found in the numerical solution of the Hodgkin-Huxley equations for the intact squid axon bathed in potassium-rich sea water with an externally applied inward current. Under the conditions the two stable steady-states exist, the Hodgkin-Huxley equations have a complex bifurcation structure including, in addition to the two stable steady-states, a stable limit cycle, two unstable equilibrium points, and one asymptotically stable equilibrium point. It was also concluded that two stable steady states can appear in the Hodgkin-Huxley axons when the leak current is comparable to the currents through the Na and K channels.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aihara K., Matsumoto G. Temporally coherent organization and instabilities in squid giant axons. J Theor Biol. 1982 Apr 21;95(4):697–720. doi: 10.1016/0022-5193(82)90349-6. [DOI] [PubMed] [Google Scholar]
  2. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hassard B. Bifurcation of periodic solutions of Hodgkin-Huxley model for the squid giant axon. J Theor Biol. 1978 Apr 6;71(3):401–420. doi: 10.1016/0022-5193(78)90168-6. [DOI] [PubMed] [Google Scholar]
  5. Inoue I. Separation of the action potential into a Na-channel spike and a K-channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions. J Gen Physiol. 1980 Sep;76(3):337–354. doi: 10.1085/jgp.76.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
  7. Meves H., Vogel W. Calcium inward currents in internally perfused giant axons. J Physiol. 1973 Nov;235(1):225–265. doi: 10.1113/jphysiol.1973.sp010386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SEGAL J. R. An anodal threshold phenomenon in the squid giant axon. Nature. 1958 Nov 15;182(4646):1370–1370. doi: 10.1038/1821370a0. [DOI] [PubMed] [Google Scholar]
  9. TASAKI I. Demonstration of two stable states of the nerve membrane in potassium-rich media. J Physiol. 1959 Oct;148:306–331. doi: 10.1113/jphysiol.1959.sp006290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tasaki I., Lerman L., Watanabe A. Analysis of excitation process in squid giant axons under bi-ionic conditions. Am J Physiol. 1969 Jan;216(1):130–138. doi: 10.1152/ajplegacy.1969.216.1.130. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES