Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Jan;37(1):319–328. doi: 10.1016/S0006-3495(82)84680-8

High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface.

L R Brown, W Braun, A Kumar, K Wüthrich
PMCID: PMC1329145  PMID: 6275926

Abstract

Previously, the size and stoichiometry of mixed micelles of perdeuterated dodecylphosphocholine and melittin were characterized and the 1H NMR spin systems of most amino acid residues of micelle-bound melittin identified. One- and two-dimensional 1H-1H Overhauser experiments have now been used to obtain qualitative information on intramolecular proton-proton distances. These data show that the N-terminal and the C-terminal segments of melittin form two spatially distinct, compact domains; using lipid spin labels these could be located near the micelle surface. For the C-terminal domain a detailed conformation was determined by using the distance contraints from the Overhauser studies as input for a distance geometry algorithm.

Full text

PDF
319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun W., Bösch C., Brown L. R., Go N., Wüthrich K. Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon. Biochim Biophys Acta. 1981 Feb 27;667(2):377–396. doi: 10.1016/0005-2795(81)90205-1. [DOI] [PubMed] [Google Scholar]
  2. Brown L. R., Bösch C., Wüthrich K. Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies. Biochim Biophys Acta. 1981 Apr 6;642(2):296–312. doi: 10.1016/0005-2736(81)90447-8. [DOI] [PubMed] [Google Scholar]
  3. Brown L. R., Lauterwein J., Wüthrich K. High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta. 1980 Apr 25;622(2):231–244. doi: 10.1016/0005-2795(80)90034-3. [DOI] [PubMed] [Google Scholar]
  4. Brown L. R. Use of fully deuterated micelles for conformational studies of membrane proteins by high resolution 1H nuclear magnetic resonance. Biochim Biophys Acta. 1979 Oct 19;557(1):135–148. doi: 10.1016/0005-2736(79)90096-8. [DOI] [PubMed] [Google Scholar]
  5. Brown L. R., Wüthrich K. Melittin bound to dodecylphosphocholine micelles. H-NMR assignments and global conformational features. Biochim Biophys Acta. 1981 Sep 21;647(1):95–111. doi: 10.1016/0005-2736(81)90298-4. [DOI] [PubMed] [Google Scholar]
  6. Bösch C., Brown L. R., Wüthrich K. Physicochemical characterization of glucagon-containing lipid micelles. Biochim Biophys Acta. 1980 Dec 12;603(2):298–312. doi: 10.1016/0005-2736(80)90376-4. [DOI] [PubMed] [Google Scholar]
  7. Chapman D., Gómez-Fernández J. C., Goñi F. M. Intrinsic protein--lipid interactions. Physical and biochemical evidence. FEBS Lett. 1979 Feb 15;98(2):211–223. doi: 10.1016/0014-5793(79)80186-6. [DOI] [PubMed] [Google Scholar]
  8. Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
  9. Dawson C. R., Drake A. F., Helliwell J., Hider R. C. The interaction of bee melittin with lipid bilayer membranes. Biochim Biophys Acta. 1978 Jun 16;510(1):75–86. doi: 10.1016/0005-2736(78)90131-1. [DOI] [PubMed] [Google Scholar]
  10. Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
  11. Lad P. L., Shier W. T. Effect of melittin-induced membrane alterations on rat heart adenylate cyclase activity. Arch Biochem Biophys. 1980 Oct 15;204(2):418–424. doi: 10.1016/0003-9861(80)90052-1. [DOI] [PubMed] [Google Scholar]
  12. Lauterwein J., Brown L. R., Wüthrich K. High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta. 1980 Apr 25;622(2):219–230. doi: 10.1016/0005-2795(80)90033-1. [DOI] [PubMed] [Google Scholar]
  13. Lauterwein J., Bösch C., Brown L. R., Wüthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta. 1979 Sep 21;556(2):244–264. doi: 10.1016/0005-2736(79)90046-4. [DOI] [PubMed] [Google Scholar]
  14. Lavialle F., Levin I. W., Mollay C. Interaction of melittin with dimyristoyl phosphatidylcholine liposomes: evidence for boundary lipid by Raman spectroscopy. Biochim Biophys Acta. 1980 Jul 16;600(1):62–71. doi: 10.1016/0005-2736(80)90411-3. [DOI] [PubMed] [Google Scholar]
  15. McLachlan A. D. Gene duplications in the structural evolution of chymotrypsin. J Mol Biol. 1979 Feb 15;128(1):49–79. doi: 10.1016/0022-2836(79)90308-5. [DOI] [PubMed] [Google Scholar]
  16. Mollay C., Kreil G., Berger H. Action of phospholipases on the cytoplasmic membrane of Escherichia coli. Stimulation by melittin. Biochim Biophys Acta. 1976 Mar 5;426(2):317–324. doi: 10.1016/0005-2736(76)90340-0. [DOI] [PubMed] [Google Scholar]
  17. Nagayama K., Wüthrich K., Ernst R. R. Two-dimensional spin echo correlated spectroscopy (SECSY) for 1H NMR studies of biological macromolecules. Biochem Biophys Res Commun. 1979 Sep 12;90(1):305–311. doi: 10.1016/0006-291x(79)91625-5. [DOI] [PubMed] [Google Scholar]
  18. Olson F. C., Munjal D., Malviya A. N. Structural and respiratory effects of melittin (Apis mellifera) on rat liver mitochondria. Toxicon. 1974 Aug;12(4):419–425. doi: 10.1016/0041-0101(74)90010-5. [DOI] [PubMed] [Google Scholar]
  19. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  20. Shinitzky M., Henkart P. Fluidity of cell membranes--current concepts and trends. Int Rev Cytol. 1979;60:121–147. [PubMed] [Google Scholar]
  21. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  22. Wickner W. The assembly of proteins into biological membranes: The membrane trigger hypothesis. Annu Rev Biochem. 1979;48:23–45. doi: 10.1146/annurev.bi.48.070179.000323. [DOI] [PubMed] [Google Scholar]
  23. Williams J. C., Bell R. M. Membrane matrix disruption by melittin. Biochim Biophys Acta. 1972 Nov 2;288(2):255–262. doi: 10.1016/0005-2736(72)90246-5. [DOI] [PubMed] [Google Scholar]
  24. Wüthrich K., Bösch C., Brown L. R. Conformational studies of lipid-bound polypeptides by elucidation of proton-proton cross-relaxation networks. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1504–1509. doi: 10.1016/s0006-291x(80)80067-2. [DOI] [PubMed] [Google Scholar]
  25. Yunes R., Goldhammer A. R., Garner W. K., Cordes E. H. Phospholipases: melittin facilitation of bee venom phospholipase A2-catalyzed hydrolysis of unsonicated lecithin liposomes. Arch Biochem Biophys. 1977 Sep;183(1):105–112. doi: 10.1016/0003-9861(77)90424-6. [DOI] [PubMed] [Google Scholar]
  26. de Bony J., Dufourcq J., Clin B. Lipid-protein interactions: NMR study of melittin and its binding to lysophosphatidylcholine. Biochim Biophys Acta. 1979 Apr 19;552(3):531–534. doi: 10.1016/0005-2736(79)90197-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES