Abstract
Melittin from bee venom is water-soluble, yet integrates into membranes and lyses cells. Each melittin chain consists of 26 amino acid residues and in aqueous salt solutions it exists as a tetramer. We have determined the molecular structure of the tetramer in two crystal forms grown from concentrated salt solutions. In both crystal forms the melittin polypeptide is a bent alpha-helical rod, with the "inner" surface largely consisting of hydrophobic sidechains and the "outer" surface consisting of hydrophilic side chains. Thus, the helix is strongly amphiphilic. In the tetramer, four such helices contribute their hydrophobic side chains to the center of the molecule. The packing of melittin tetramers is also very similar in the two crystal forms: they are packed in planar layers with the outsides forming hydrophilic surfaces and the insides (the centers of melittin tetramers) forming a hydrophobic surface. We suggest that the surface activity of melittin can be rationalized in terms of these surfaces. The lytic activity of melittin can also be interpreted in terms of the molecular structure observed in the crystals: the hydrophobic inner surface of a melittin helix may integrate into the apolar region of a bilayer with the helix axis approximately parallel to the plane of the bilayer, and with the hydrophilic surface exposed to the aqueous phase. This integration would be expected to disrupt the bilayer because of melittin helix would penetrate only a short distance into it. Additionally, the integration of melittin from one side of a bilayer would produce a surface area difference across the bilayer, perhaps leading to lysis. In this view, melittin is distinct from membrane proteins that penetrate evenly into both leaflets of a bilayer or exactly halfway through a bilayer, and hence we refer to melittin as a surface-active protein.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D., Terwilliger T. C., Wickner W., Eisenberg D. Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry. J Biol Chem. 1980 Mar 25;255(6):2578–2582. [PubMed] [Google Scholar]
- Brown L. R., Lauterwein J., Wüthrich K. High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta. 1980 Apr 25;622(2):231–244. doi: 10.1016/0005-2795(80)90034-3. [DOI] [PubMed] [Google Scholar]
- Dawson C. R., Drake A. F., Helliwell J., Hider R. C. The interaction of bee melittin with lipid bilayer membranes. Biochim Biophys Acta. 1978 Jun 16;510(1):75–86. doi: 10.1016/0005-2736(78)90131-1. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Terwilliger T. C., Tsui F. Structural studies of bee melittin. Biophys J. 1980 Oct;32(1):252–254. doi: 10.1016/S0006-3495(80)84953-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esser A. F., Bartholomew R. M., Jensen F. C., Müller-Eberhard H. J. Disassembly of viral membranes by complement independent of channel formation. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5843–5847. doi: 10.1073/pnas.76.11.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esser A. F., Bartholomew R. M., Jensen F. C., Müller-Eberhard H. J. Disassembly of viral membranes by complement independent of channel formation. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5843–5847. doi: 10.1073/pnas.76.11.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitton J. E., Dell A., Shaw W. V. The amino acid sequence of the delta haemolysin of Staphylococcus aureus. FEBS Lett. 1980 Jun 30;115(2):209–212. doi: 10.1016/0014-5793(80)81170-7. [DOI] [PubMed] [Google Scholar]
- Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
- Habermann E., Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed] [Google Scholar]
- Habermann E., Kowallek H. Modifikationen der Aminogruppen und des Tryptophans im Melittin als Mittel zur Erkennung von Struktur-Wirkungs-Beziehungen. Hoppe Seylers Z Physiol Chem. 1970 Jul;351(7):884–890. [PubMed] [Google Scholar]
- Hegner D., Schummer U., Schnepel G. H. The interaction of a lytic peptide, melittin, with spin-labeled membranes. Biochim Biophys Acta. 1973 Jan 2;291(1):15–22. doi: 10.1016/0005-2736(73)90056-4. [DOI] [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Israelachvili J. N., Mitchell D. J. A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta. 1975 Apr 21;389(1):13–19. doi: 10.1016/0005-2736(75)90381-8. [DOI] [PubMed] [Google Scholar]
- Knöppel E., Eisenberg D., Wickner W. Interactions of melittin, a preprotein model, with detergents. Biochemistry. 1979 Sep 18;18(19):4177–4181. doi: 10.1021/bi00586a021. [DOI] [PubMed] [Google Scholar]
- Lauterwein J., Bösch C., Brown L. R., Wüthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta. 1979 Sep 21;556(2):244–264. doi: 10.1016/0005-2736(79)90046-4. [DOI] [PubMed] [Google Scholar]
- Mollay C. Effect of melitin and melittin fragments on the thermotropic phase transition of dipalmitoyllecithin and on the amount of lipid-bound water. FEBS Lett. 1976 Apr 15;64(1):65–68. doi: 10.1016/0014-5793(76)80250-5. [DOI] [PubMed] [Google Scholar]
- Mollay C., Kreil G., Berger H. Action of phospholipases on the cytoplasmic membrane of Escherichia coli. Stimulation by melittin. Biochim Biophys Acta. 1976 Mar 5;426(2):317–324. doi: 10.1016/0005-2736(76)90340-0. [DOI] [PubMed] [Google Scholar]
- Segrest J. P., Jackson R. L., Morrisett J. D., Gotto A. M., Jr A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 1974 Jan 15;38(3):247–258. doi: 10.1016/0014-5793(74)80064-5. [DOI] [PubMed] [Google Scholar]
- Sessa G., Freer J. H., Colacicco G., Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969 Jul 10;244(13):3575–3582. [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbot J. C., Dufourcq J., de Bony J., Faucon J. F., Lussan C. Conformational change and self association of monomeric melittin. FEBS Lett. 1979 Jun 1;102(1):191–193. doi: 10.1016/0014-5793(79)80957-6. [DOI] [PubMed] [Google Scholar]
- Thelestam M., Möllby R. Cytotoxic effects on the plasma membrane of human diploid fibroblasts--a comparative study of leakage tests. Med Biol. 1976 Feb;54(1):39–49. [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F. Effect of melittin on thermotropic lipid state transitions in phosphatidylcholine liposomes. Biochim Biophys Acta. 1976 Apr 5;426(4):616–623. doi: 10.1016/0005-2736(76)90125-5. [DOI] [PubMed] [Google Scholar]
- Williams J. C., Bell R. M. Membrane matrix disruption by melittin. Biochim Biophys Acta. 1972 Nov 2;288(2):255–262. doi: 10.1016/0005-2736(72)90246-5. [DOI] [PubMed] [Google Scholar]
