Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1983 Feb;41(2):167–178. doi: 10.1016/S0006-3495(83)84417-8

Use of AC Impedance Analysis to Study Membrane Changes Related to Acid Secretion in Amphibian Gastric Mucosa

Chris Clausen, Terry E Machen, Jared M Diamond
PMCID: PMC1329164  PMID: 6601499

Abstract

We have applied transepithelial AC impedance techniques to gastric mucosa to reconcile ultrastructural and electrophysiological findings about gastric acid secretion and the mucosal barrier. By fitting impedance data measured at different HCl secretion rates to equivalent circuit models, we extracted capacitances and resistances (as measures of membrane area and ionic conductance, respectively) for the apical and basolateral membranes. The impedance measurements were found to be incompatible with earlier equivalent circuit models that modeled membrane electrical properties as lumped circuits based on one or two cell types. A distributed circuit model was developed that assumed only one dominant electrical pathway (i.e., one cell type), but that incorporated electrical effects arising from long and narrow membrane-lined structures present in the epithelium (e.g., gastric crypts, tubulovesicles, lateral intercellular spaces). This morphologically based model was found to represent the measured data accurately, and to yield values for membrane capacitances consistent with morphometric measurements of membrane areas. The main physiological conclusions from this analysis were as follows: (a) The dominant transepithelial current pathway may reside in the oxyntic cells. (b) The transepithelial conductance increase associated with the onset of acid secretion is entirely due to increased conductance of the apical membrane. This is in turn due entirely to increased area of this membrane, resulting from incorporation of tubulovesicular membrane. (c) When membrane conductances are normalized to actual membrane area by use of membrane capacitances, it turns out that acid secretion is not associated with a change in specific ionic conductance (change in conductance per unit area) at either the apical or basolateral membrane. (d) The puzzlingly low value of transepithelial resistance (≤400 Ω-cm2) arises because there are hundreds or thousands of square centimeters of actual membrane area per square centimeter chamber area. Apical membrane resistance is 25 kΩ-cm2 (actual membrane area), implying a tight barrier to back-diffusion of protons.

Full text

PDF
167

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown A. C., Kastella K. G. The AC impedance of frog skin and its relation to active transport. Biophys J. 1965 Jul;5(4):591–606. doi: 10.1016/S0006-3495(65)86736-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clausen C., Fernandez J. M. A low-cost method for rapid transfer function measurements with direct application to biological impedance analysis. Pflugers Arch. 1981 Jun;390(3):290–295. doi: 10.1007/BF00658279. [DOI] [PubMed] [Google Scholar]
  3. Clausen C., Lewis S. A., Diamond J. M. Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J. 1979 May;26(2):291–317. doi: 10.1016/S0006-3495(79)85250-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clausen C., Machen T. E., Diamond J. M. Changes in the cell membranes of the bullfrog gastric mucosa with Acid secretion. Science. 1982 Jul 30;217(4558):448–450. doi: 10.1126/science.217.4558.448. [DOI] [PubMed] [Google Scholar]
  5. Diamond J. M. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist. 1977 Feb;20(1):10–18. [PubMed] [Google Scholar]
  6. Flemström G. Na+ transport and impedance properties of the isolated frog gastric mucosa at different O2 tensions. Biochim Biophys Acta. 1971 Jan 5;225(1):35–45. doi: 10.1016/0005-2736(71)90281-1. [DOI] [PubMed] [Google Scholar]
  7. Forte J. G., Black J. A., Forte T. M., Machen T. E., Wolosin J. M. Ultrastructural changes related to functional activity in gastric oxyntic cells. Am J Physiol. 1981 Nov;241(5):G349–G358. doi: 10.1152/ajpgi.1981.241.5.G349. [DOI] [PubMed] [Google Scholar]
  8. Forte T. M., Machen T. E., Forte J. G. Ultrastructural and physiological changes in piglet oxyntic cells during histamine stimulation and metabolic inhibition. Gastroenterology. 1975 Dec;69(6):1208–1222. [PubMed] [Google Scholar]
  9. Forte T. M., Machen T. E., Forte J. G. Ultrastructural changes in oxyntic cells associated with secretory function: a membrane-recycling hypothesis. Gastroenterology. 1977 Oct;73(4 Pt 2):941–955. [PubMed] [Google Scholar]
  10. Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
  11. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lewis S. A., Diamond J. M. Na+ transport by rabbit urinary bladder, a tight epithelium. J Membr Biol. 1976 Aug 27;28(1):1–40. doi: 10.1007/BF01869689. [DOI] [PubMed] [Google Scholar]
  13. Lewis S. A., de Moura J. L. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature. 1982 Jun 24;297(5868):685–688. doi: 10.1038/297685a0. [DOI] [PubMed] [Google Scholar]
  14. Logdson C. D., Machen T. E. Ultrastructural changes during stimulation of amphibian oxyntic cells viewed by scanning and transmission electron microscopy. Anat Rec. 1982 Jan;202(1):73–83. doi: 10.1002/ar.1092020109. [DOI] [PubMed] [Google Scholar]
  15. Logsdon C. D., Machen T. E. Ionic requirements for H+ secretion and membrane elaboration in frog oxyntic cells. Am J Physiol. 1982 Apr;242(4):G388–G399. doi: 10.1152/ajpgi.1982.242.4.G388. [DOI] [PubMed] [Google Scholar]
  16. Machen T. E., Clausen C., Diamond J. M. Electrical events during stimulation of HCl secretion by frog gastric mucosa in vitro. Gastroenterology. 1977 Oct;73(4 Pt 2):970–970. [PubMed] [Google Scholar]
  17. Machen T. E., Silen W., Forte J. G. Na+ transport by mammalian stomach. Am J Physiol. 1978 Mar;234(3):E228–E235. doi: 10.1152/ajpendo.1978.234.3.E228. [DOI] [PubMed] [Google Scholar]
  18. Noyes D. H., Rehm W. S. Voltage response of frog gastric mucosa to direct current. Am J Physiol. 1970 Jul;219(1):184–192. doi: 10.1152/ajplegacy.1970.219.1.184. [DOI] [PubMed] [Google Scholar]
  19. Ring A., Sandblom J. Impedance of the frog gastric mucosa, the Teorell-Wersäll effect. Ups J Med Sci. 1980;85(3):283–293. doi: 10.3109/03009738009179198. [DOI] [PubMed] [Google Scholar]
  20. Spenney J. G., Shoemaker R. L., Sachs G. Microelectrode studies of fundic gastric mucosa: cellular coupling and shunt conductance. J Membr Biol. 1974;19(1):105–128. doi: 10.1007/BF01869973. [DOI] [PubMed] [Google Scholar]
  21. Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]
  22. Wright G. H. Electrical impedance, ultrastructure and ion transport in foetal gastric mucosa. J Physiol. 1974 Nov;242(3):661–672. doi: 10.1113/jphysiol.1974.sp010729. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES