Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1983 May;42(2):137–144. doi: 10.1016/S0006-3495(83)84379-3

Thermodynamic properties of the lipid bilayer transition. Pseudocritical phenomena.

S Mitaku, T Jippo, R Kataoka
PMCID: PMC1329216  PMID: 6688030

Abstract

Ultrasonic relaxation of multilamellar liposomes formed from dipalmitoylphosphatidylcholine was measured near the gel-to-liquid crystal transition by a differential ultrasonic resonator. The relaxation time and strength increased remarkably near the transition temperature, indicating a pseudocritical phenomenon. A quantitative analysis of the relaxation in terms of thermodynamic relationships between specific heat, thermal-expansion coefficient, and compressibility showed that more than 90% of the total endothermic heat of the transition arises from the latent heat. The temperature dependence of the ultrasonic relaxation parameters was also analyzed by the Landau theory; we obtain a small but finite difference, 0.6 degree C, between the pseudocritical temperature and the transition temperature. These results provide a quantitative description of both the first-order and second-order characters of the gel-to-liquid crystal transition.

Full text

PDF
137

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albon N., Sturtevant J. M. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines. Proc Natl Acad Sci U S A. 1978 May;75(5):2258–2260. doi: 10.1073/pnas.75.5.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eggers F., Funck T. Ultrasonic measurements with milliliter liquid samples in the 0.5-100 MHz range. Rev Sci Instrum. 1973 Aug;44(8):969–977. doi: 10.1063/1.1686339. [DOI] [PubMed] [Google Scholar]
  3. Hinz H. J., Sturtevant J. M. Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L- -lecithins. J Biol Chem. 1972 Oct 10;247(19):6071–6075. [PubMed] [Google Scholar]
  4. Jähnig F. Critical effects from lipid-protein interaction in membranes. I. Theoretical description. Biophys J. 1981 Nov;36(2):329–345. doi: 10.1016/S0006-3495(81)84735-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kawato S., Kinosita K., Jr, Ikegami A. Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1978 Nov 14;17(23):5026–5031. doi: 10.1021/bi00616a026. [DOI] [PubMed] [Google Scholar]
  7. Lippert J. L., Peticolas W. L. Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1572–1576. doi: 10.1073/pnas.68.7.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mitaku S., Date T. Anomalies of nanosecond ultrasonic relaxation in the lipid bilayer transition. Biochim Biophys Acta. 1982 Jun 14;688(2):411–421. doi: 10.1016/0005-2736(82)90352-2. [DOI] [PubMed] [Google Scholar]
  9. Mitaku S., Ikegami A., Sakanishi A. Ultrasonic studies of lipid bilayer. Phase transition in synthetic phosphatidylcholine liposomes. Biophys Chem. 1978 Sep;8(4):295–304. doi: 10.1016/0301-4622(78)80012-x. [DOI] [PubMed] [Google Scholar]
  10. Mitaku S., Okano K. Ultrasonic measurements of two-component lipid bilayer suspensions. Biophys Chem. 1981 Oct;14(2):147–158. doi: 10.1016/0301-4622(81)85015-6. [DOI] [PubMed] [Google Scholar]
  11. Nagle J. F. Lipid bilayer phase transition: density measurements and theory. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3443–3444. doi: 10.1073/pnas.70.12.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nagle J. F., Scott H. L., Jr Lateral compressibility of lipid mono- and bilayers. Theory of membrane permeability. Biochim Biophys Acta. 1978 Nov 2;513(2):236–243. doi: 10.1016/0005-2736(78)90176-1. [DOI] [PubMed] [Google Scholar]
  13. Owicki J. C., Springgate M. W., McConnell H. M. Theoretical study of protein--lipid interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1616–1619. doi: 10.1073/pnas.75.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Papahadjopoulos D., Jacobson K., Nir S., Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973 Jul 6;311(3):330–348. doi: 10.1016/0005-2736(73)90314-3. [DOI] [PubMed] [Google Scholar]
  15. Seelig A., Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974 Nov 5;13(23):4839–4845. doi: 10.1021/bi00720a024. [DOI] [PubMed] [Google Scholar]
  16. Sheetz M. P., Chan S. I. Effect of sonication on the structure of lecithin bilayers. Biochemistry. 1972 Nov 21;11(24):4573–4581. doi: 10.1021/bi00774a024. [DOI] [PubMed] [Google Scholar]
  17. Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
  18. Suurkuusk J., Lentz B. R., Barenholz Y., Biltonen R. L., Thompson T. E. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1976 Apr 6;15(7):1393–1401. doi: 10.1021/bi00652a007. [DOI] [PubMed] [Google Scholar]
  19. Trudell J. R., Payan D. G., Chin J. H., Cohen E. N. Pressure-induced elevation of phase transition temperature in dipalmitoylphosphatidylcholine bilayers. An electron spin resonance measurement of the enthalpy of phase transition. Biochim Biophys Acta. 1974 Dec 24;373(3):436–443. doi: 10.1016/0005-2736(74)90023-6. [DOI] [PubMed] [Google Scholar]
  20. Tsong T. Y., Kanehisa M. I. Relaxation phenomena in aqueous dispersions of synthetic lecithins. Biochemistry. 1977 Jun 14;16(12):2674–2680. doi: 10.1021/bi00631a014. [DOI] [PubMed] [Google Scholar]
  21. Wilkinson D. A., Nagle J. F. Specific heats of lipid dispersions in single phase regions. Biochim Biophys Acta. 1982 May 21;688(1):107–115. doi: 10.1016/0005-2736(82)90584-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES