Abstract
A synthetic retinal having a fixed 11-cis geometry has been used to prepare a nonbleachable analogue of bovine rhodopsin. Marked differences in the picosecond absorption and fluorescence behavior of this analogue at room temperature, compared with that of natural rhodopsin, were observed. This not only indicates that the 11-cis to trans isomerization of the retinal moiety is the crucial primary event in the photolysis of rhodopsin, but also it establishes that this isomerization must occur on the picosecond time scale or faster.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birge R. R. Photophysics of light transduction in rhodopsin and bacteriorhodopsin. Annu Rev Biophys Bioeng. 1981;10:315–354. doi: 10.1146/annurev.bb.10.060181.001531. [DOI] [PubMed] [Google Scholar]
- Doukas A. G., Lu P. Y., Alfano R. R. Fluorescence relaxation kinetics from rhodopsin and isorhodopsin. Biophys J. 1981 Aug;35(2):547–550. doi: 10.1016/S0006-3495(81)84810-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green B. H., Monger T. G., Alfano R. R., Aton B., Callender R. H. Cis-trans isomerisation in rhodopsin occurs in picoseconds. Nature. 1977 Sep 8;269(5624):179–180. doi: 10.1038/269179a0. [DOI] [PubMed] [Google Scholar]
- Honig B., Ebrey T., Callender R. H., Dinur U., Ottolenghi M. Photoisomerization, energy storage, and charge separation: a model for light energy transduction in visual pigments and bacteriorhodopsin. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2503–2507. doi: 10.1073/pnas.76.6.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huppert D., Rentzepis P. M., Kliger D. S. Picosecond and nanosecond isomerization kinetics of protonated 11-cis retinylidene Schiff bases. Photochem Photobiol. 1977 Feb;25(2):193–197. doi: 10.1111/j.1751-1097.1977.tb06897.x. [DOI] [PubMed] [Google Scholar]
- Kobayashi T. Existence of hypsorhodopsin as the first intermediate in the primary photochemical process of cattle rhodopsin. Photochem Photobiol. 1980 Aug;32(2):207–215. doi: 10.1111/j.1751-1097.1980.tb04011.x. [DOI] [PubMed] [Google Scholar]
- Mao B., Tsuda M., Ebrey T. G., Akita H., Balogh-Nair V., Nakanishi K. Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene. Biophys J. 1981 Aug;35(2):543–546. doi: 10.1016/S0006-3495(81)84809-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monger T. G., Alfano R. R., Callender R. H. Photochemistry of rhodopsin and isorhodopsin investigated on a picosecond time scale. Biophys J. 1979 Jul;27(1):105–115. doi: 10.1016/S0006-3495(79)85205-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters K., Applebury M. L., Rentzepis P. M. Primary photochemical event in vision: proton translocation. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3119–3123. doi: 10.1073/pnas.74.8.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A. Charge stabilization mechanism in the visual and purple membrane pigments. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2558–2562. doi: 10.1073/pnas.75.6.2558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Meer K., Mulder J. J., Lugtenburg J. A new facet in rhodopsin photochemistry. Photochem Photobiol. 1976 Oct;24(4):363–367. doi: 10.1111/j.1751-1097.1976.tb06837.x. [DOI] [PubMed] [Google Scholar]
