Abstract
Low-frequency internal motions in protein molecules play a key role in biological functions. Based on previous work with alpha-helical structure, the quasi-continuum model is extended to the beta-structure, another fundamental element in protein molecules. In terms of the equations derived here, one can easily calculate the low-frequency wave number of a beta-sheet in an accordionlike motion, and the low-frequency wave number of a beta-barrel in a breathing motion. The calculated results for immunoglobulin G and concanavalin A agree well with the observations. These findings further verify that the observed low-frequency motion (or the so-called dominant low-frequency mode) in a protein molecule is essentially governed by the collective fluctuations of its weak bonds, especially hydrogen bonds, and the internal displacement of the massive atoms therein, as described by the quasi-continuum model.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beale D., Feinstein A. Structure and function of the constant regions of immunoglobulins. Q Rev Biophys. 1976 May;9(2):135–180. doi: 10.1017/s0033583500002390. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Brown K. G., Erfurth S. C., Small E. W., Peticolas W. L. Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1467–1469. doi: 10.1073/pnas.69.6.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C. Biological functions of low-frequency vibrations (phonons). III. Helical structures and microenvironment. Biophys J. 1984 May;45(5):881–889. doi: 10.1016/S0006-3495(84)84234-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C. Identification of low-frequency modes in protein molecules. Biochem J. 1983 Dec 1;215(3):465–469. doi: 10.1042/bj2150465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C. Low-frequency vibrations of DNA molecules. Biochem J. 1984 Jul 1;221(1):27–31. doi: 10.1042/bj2210027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C. Low-frequency vibrations of helical structures in protein molecules. Biochem J. 1983 Mar 1;209(3):573–580. doi: 10.1042/bj2090573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C., Scheraga H. A. Origin of the right-handed twist of beta-sheets of poly(LVal) chains. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7047–7051. doi: 10.1073/pnas.79.22.7047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou K. C. The biological functions of low-frequency vibrations (phonons). 4. Resonance effects and allosteric transition. Biophys Chem. 1984 Aug;20(1-2):61–71. doi: 10.1016/0301-4622(84)80005-8. [DOI] [PubMed] [Google Scholar]
- Fanconi B., Finegold L. Vibrational states of the biopolymer polyglycine II: theory and experiment. Science. 1975 Oct 31;190(4213):458–460. doi: 10.1126/science.1166312. [DOI] [PubMed] [Google Scholar]
- Genzel L., Keilmann F., Martin T. P., Winterling G., Yacoby Y., Fröhlich H., Makinen M. W. Low-frequency Raman spectra of lysozyme. Biopolymers. 1976 Jan;15(1):219–225. doi: 10.1002/bip.1976.360150115. [DOI] [PubMed] [Google Scholar]
- Go N., Noguti T., Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3696–3700. doi: 10.1073/pnas.80.12.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hol W. G., Halie L. M., Sander C. Dipoles of the alpha-helix and beta-sheet: their role in protein folding. Nature. 1981 Dec 10;294(5841):532–536. doi: 10.1038/294532a0. [DOI] [PubMed] [Google Scholar]
- Ito K., Shimanouchi T. Vibrational frequencies and modes of alpha-helix. Biopolymers. 1970;9(4):383–399. doi: 10.1002/bip.1970.360090402. [DOI] [PubMed] [Google Scholar]
- Karplus M., McCammon J. A. The internal dynamics of globular proteins. CRC Crit Rev Biochem. 1981;9(4):293–349. doi: 10.3109/10409238109105437. [DOI] [PubMed] [Google Scholar]
- Levy R. M., Srinivasan A. R., Olson W. K., McCammon J. A. Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers. 1984 Jun;23(6):1099–1112. doi: 10.1002/bip.360230610. [DOI] [PubMed] [Google Scholar]
- Lifson S., Sander C. Antiparallel and parallel beta-strands differ in amino acid residue preferences. Nature. 1979 Nov 1;282(5734):109–111. doi: 10.1038/282109a0. [DOI] [PubMed] [Google Scholar]
- Padlan E. A. Structural basis for the specificity of antibody-antigen reactions and structural mechanisms for the diversification of antigen-binding specificities. Q Rev Biophys. 1977 Feb;10(1):35–65. doi: 10.1017/s0033583500000135. [DOI] [PubMed] [Google Scholar]
- Painter P. C., Mosher L. E., Rhoads C. Low-frequency modes in the Raman spectra of proteins. Biopolymers. 1982 Jul;21(7):1469–1472. doi: 10.1002/bip.360210715. [DOI] [PubMed] [Google Scholar]
- Reeke G. N., Jr, Becker J. W., Edelman G. M. The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. J Biol Chem. 1975 Feb 25;250(4):1525–1547. [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Saul F. A., Amzel L. M., Poljak R. J. Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 A resolution. J Biol Chem. 1978 Jan 25;253(2):585–597. [PubMed] [Google Scholar]
- Sternberg M. J., Thornton J. M. On the conformation of proteins: an analysis of beta-pleated sheets. J Mol Biol. 1977 Feb 25;110(2):285–296. doi: 10.1016/s0022-2836(77)80073-9. [DOI] [PubMed] [Google Scholar]
- Suezaki Y., Go N. Breathing mode of conformational fluctuations in globular proteins. Int J Pept Protein Res. 1975;7(4):333–334. doi: 10.1111/j.1399-3011.1975.tb02448.x. [DOI] [PubMed] [Google Scholar]