Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Sep;48(3):375–390. doi: 10.1016/S0006-3495(85)83794-2

Gating current harmonics. I. Sodium channel activation gating in dynamic steady states.

J F Fohlmeister, W J Adelman Jr
PMCID: PMC1329352  PMID: 2412603

Abstract

Internally perfused and pronase-treated giant axons were prepared for gating current measurements. Gating current records were obtained under large-amplitude sinusoidal voltage clamp after allowing for settling times into dynamic steady states. The current records were analyzed as functions of the mean membrane potential of the test sinusoid for which the amplitude and frequency were held constant. The nonlinear analysis consisted of determining the harmonic content (amplitudes and phases) of the distorted periodic current records. The most pronounced feature found in the analysis is a dominant second harmonic centered at Emean = +10 mV. A number of other characteristic harmonic behaviors were also observed. The harmonics tend to die away for very small (less than -60 mV) and very large (greater than +72 mV) values of Emean. The harmonic behavior seen in the axonal data is basically different from that seen in gating current simulations generated by the sodium-activation kinetics of standard models, including the Hodgkin-Huxley model. Some of the differences can be reconciled without requiring fundamental changes in the model kinetic schemes. However, the dominant harmonic feature seen in the axonal data cannot be reconciled with the model kinetics without a fundamental change in the models. The axonal data suggest two moving molecular components with independent degrees of freedom whose properties are outlined on the basis of the data presented herein.

Full text

PDF
375

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F., Rojas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol. 1973 Oct;62(4):375–391. doi: 10.1085/jgp.62.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumann G. Novel kinetics in the sodium conductance system predicted by the aggregation model of channel gating. Biophys J. 1981 Sep;35(3):699–705. doi: 10.1016/S0006-3495(81)84821-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COLE K. S., MOORE J. W. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J. 1960 Sep;1:1–14. doi: 10.1016/s0006-3495(60)86871-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conti F., Neher E. Single channel recordings of K+ currents in squid axons. Nature. 1980 May 15;285(5761):140–143. doi: 10.1038/285140a0. [DOI] [PubMed] [Google Scholar]
  7. Fernández J. M., Bezanilla F., Taylor R. E. Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J Gen Physiol. 1982 Jan;79(1):41–67. doi: 10.1085/jgp.79.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fohlmeister J. F., Adelman W. J., Jr Gating current harmonics. II. Model simulations of axonal gating currents. Biophys J. 1985 Sep;48(3):391–400. doi: 10.1016/S0006-3495(85)83795-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fohlmeister J. F., Adelman W. J., Jr Rapid sodium channel conductance changes during voltage clamp steps in squid giant axons. Biophys J. 1984 Mar;45(3):513–521. doi: 10.1016/S0006-3495(84)84188-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holloway S. F., Poppele R. E. Post-tetanic hyperpolarization evoked by depolarizing pulses in crayfish stretch receptor neurones in tetrodotoxin. J Physiol. 1984 May;350:343–360. doi: 10.1113/jphysiol.1984.sp015205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jakobsson E. A fully coupled transient excited state model for the sodium channel. I. Conductance in the voltage clamped case. J Math Biol. 1978 Mar 3;5(2):121–142. doi: 10.1007/BF00275895. [DOI] [PubMed] [Google Scholar]
  13. Keynes R. D., Rojas E. The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. J Physiol. 1976 Feb;255(1):157–189. doi: 10.1113/jphysiol.1976.sp011274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984 Nov 8;312(5990):121–127. doi: 10.1038/312121a0. [DOI] [PubMed] [Google Scholar]
  15. Taylor R. E., Bezanilla F. Sodium and gating current time shifts resulting from changes in initial conditions. J Gen Physiol. 1983 Jun;81(6):773–784. doi: 10.1085/jgp.81.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES