Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Sep;48(3):411–422. doi: 10.1016/S0006-3495(85)83797-8

Macro- and micro-stabilities of the kringle 4 domain from plasminogen. The effect of ligand binding.

A De Marco, A Motta, M Llinás, R A Laursen
PMCID: PMC1329355  PMID: 4041537

Abstract

1H-NMR spectra of kringle 4 from human plasminogen have been recorded over wide pH* and temperature ranges, both in the presence and in the absence of p-benzylaminesulfonic acid (BASA). Several resonances exhibit chemical shift differences between kringle folded and unfolded forms which are sufficiently well resolved to allow for a determination of equilibrium Van't Hoff enthalpies and entropies for unfolding. The interaction with BASA shifts the kringle unfolding temperature from approximately 335 degrees K to approximately 343 degrees K. The pH* range of stability is also wider for the complex than for the free kringle: in the acidic range the pH* of half-unfolding, pHu*, is decreased from 2.8 for the unligated polypeptide to approximately 2.0 in the presence of BASA, while in the basic range pHu*, shifts from approximately 10.8 to 11.5. However, in contrast with what is observed at acidic pH*, unfolding at basic pH* leads to irreversible denaturation and exhibits a sharp, order-disorder transition both in the presence and in the absence of ligand. The structural stabilization conferred by the ligand is accompanied by a drastic reduction of the average rate of 1H-2H exchange in 2H2O under conditions that preclude a major cooperative unfolding. Thus, macro- and micro-stabilities of kringle domains appear to be highly correlated.

Full text

PDF
411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castellino F. J., Ploplis V. A., Powell J. R., Strickland D. K. The existence of independent domain structures in human Lys77-plasminogen. J Biol Chem. 1981 May 25;256(10):4778–4782. [PubMed] [Google Scholar]
  2. Cole K. R., Castellino F. J. The binding of antifibrinolytic amino acids to kringle-4-containing fragments of plasminogen. Arch Biochem Biophys. 1984 Mar;229(2):568–575. doi: 10.1016/0003-9861(84)90189-9. [DOI] [PubMed] [Google Scholar]
  3. De Marco A., Hochschwender S. M., Laursen R. A., Llinás M. Human plasminogen. Proton NMR studies on kringle 1. J Biol Chem. 1982 Nov 10;257(21):12716–12721. [PubMed] [Google Scholar]
  4. De Marco A., Laursen R. A., Llinás M. Proton Overhauser experiments on kringle 4 from human plasminogen. Implications for the structure of the kringles' hydrophobic core. Biochim Biophys Acta. 1985 Mar 1;827(3):369–380. doi: 10.1016/0167-4838(85)90221-3. [DOI] [PubMed] [Google Scholar]
  5. De Marco A., Pluck N. D., Bányai L., Trexler M., Laursen R. A., Patthy L., Llinás M., Williams R. J. Analysis and identification of aromatic signals in the proton magnetic resonance spectrum of the kringle 4 fragment from human plasminogen. Biochemistry. 1985 Jan 29;24(3):748–753. doi: 10.1021/bi00324a032. [DOI] [PubMed] [Google Scholar]
  6. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  7. Günzler W. A., Steffens G. J., Otting F., Kim S. M., Frankus E., Flohé L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem. 1982 Oct;363(10):1155–1165. doi: 10.1515/bchm2.1982.363.2.1155. [DOI] [PubMed] [Google Scholar]
  8. Hochschwender S. M., Laursen R. A., De Marco A., Llinas M. 600 MHz H nuclear magnetic resonance studies of the kringle 4 fragment of human plasminogen. Arch Biochem Biophys. 1983 May;223(1):58–67. doi: 10.1016/0003-9861(83)90571-4. [DOI] [PubMed] [Google Scholar]
  9. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  10. Lerch P. G., Rickli E. E., Lergier W., Gillessen D. Localization of individual lysine-binding regions in human plasminogen and investigations on their complex-forming properties. Eur J Biochem. 1980;107(1):7–13. doi: 10.1111/j.1432-1033.1980.tb04617.x. [DOI] [PubMed] [Google Scholar]
  11. Llinas M., De Marco A., Hochschwender S. M., Laursen R. A. A 1H-NMR study of isolated domains from human plasminogen. Structural homology between kringles 1 and 4. Eur J Biochem. 1983 Oct 3;135(3):379–391. doi: 10.1111/j.1432-1033.1983.tb07665.x. [DOI] [PubMed] [Google Scholar]
  12. Novokhatny V. V., Kudinov S. A., Privalov P. L. Domains in human plasminogen. J Mol Biol. 1984 Oct 25;179(2):215–232. doi: 10.1016/0022-2836(84)90466-2. [DOI] [PubMed] [Google Scholar]
  13. Patthy L., Trexler M., Váli Z., Bányai L., Váradi A. Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases. FEBS Lett. 1984 Jun 4;171(1):131–136. doi: 10.1016/0014-5793(84)80473-1. [DOI] [PubMed] [Google Scholar]
  14. Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
  15. Pletcher C. H., Bouhoutsos-Brown E. F., Bryant R. G., Nelsestuen G. L. Effects of temperature and pH on prothrombin fragment 1 conformation as determined by nuclear magnetic resonance. Biochemistry. 1981 Oct 13;20(21):6149–6155. doi: 10.1021/bi00524a037. [DOI] [PubMed] [Google Scholar]
  16. Price P. A., Williamson M. K., Epstein D. J. Specific tritium incorporation into gamma-carboxyglutamic acid in proteins. The pH dependence of gamma-proton exchange. J Biol Chem. 1981 Feb 10;256(3):1172–1176. [PubMed] [Google Scholar]
  17. Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
  18. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  19. Privalov P. L., Tsalkova T. N. Micro- and macro-stabilities of globular proteins. Nature. 1979 Aug 23;280(5724):693–696. doi: 10.1038/280693a0. [DOI] [PubMed] [Google Scholar]
  20. Thorsen S., Clemmensen I., Sottrup-Jensen L., Magnusson S. Adsorption to fibrin of native fragments of known primary structure from human plasminogen. Biochim Biophys Acta. 1981 May 29;668(3):377–387. doi: 10.1016/0005-2795(81)90171-9. [DOI] [PubMed] [Google Scholar]
  21. Trexler M., Váli Z., Patthy L. Structure of the omega-aminocarboxylic acid-binding sites of human plasminogen. Arginine 70 and aspartic acid 56 are essential for binding of ligand by kringle 4. J Biol Chem. 1982 Jul 10;257(13):7401–7406. [PubMed] [Google Scholar]
  22. Váli Z., Patthy L. Location of the intermediate and high affinity omega-aminocarboxylic acid-binding sites in human plasminogen. J Biol Chem. 1982 Feb 25;257(4):2104–2110. [PubMed] [Google Scholar]
  23. Wiman B., Lijnen H. R., Collen D. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen. Biochim Biophys Acta. 1979 Jul 25;579(1):142–154. doi: 10.1016/0005-2795(79)90094-1. [DOI] [PubMed] [Google Scholar]
  24. Winn E. S., Hu S. P., Hochschwender S. M., Laursen R. A. Studies on the lysine-binding sites of human plasminogen. The effect of ligand structure on the binding of lysine analogs to plasminogen. Eur J Biochem. 1980 Mar;104(2):579–586. doi: 10.1111/j.1432-1033.1980.tb04461.x. [DOI] [PubMed] [Google Scholar]
  25. Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES