Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Sep;48(3):519–523. doi: 10.1016/S0006-3495(85)83807-8

Capacitative transients in voltage-clamped epithelia.

J F Garcia-Diaz, A Essig
PMCID: PMC1329365  PMID: 4041541

Abstract

In voltage-clamped epithelia the cell membrane potential transient during a + 10-mV transepithelial pulse conforms to the expected behavior for a series combination of two linear resistance-capacitance (RC) circuits. The evolution of the cell potential is characterized by a single time constant with values of 30-130 ms in frog skin and Necturus gallbladder. These observations have important consequences for the measurement of cell membrane resistance ratios and the interpretation of current-voltage relations.

Full text

PDF
519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cuthbert A. W., Painter E. The action of antidiuretic hormone on cell membranes. Voltage transient studies. Br J Pharmacol. 1969 Jan;35(1):29–50. doi: 10.1111/j.1476-5381.1969.tb07965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DeLong J., Civan M. M. Apical sodium entry in split frog skin: current-voltage relationship. J Membr Biol. 1984;82(1):25–40. doi: 10.1007/BF01870729. [DOI] [PubMed] [Google Scholar]
  3. Essig A. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism. Biophys J. 1982 May;38(2):143–152. doi: 10.1016/S0006-3495(82)84541-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. García-Díaz J. F., Nagel W., Essig A. Voltage-dependent K conductance at the apical membrane of Necturus gallbladder. Biophys J. 1983 Sep;43(3):269–278. doi: 10.1016/S0006-3495(83)84350-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MAURO A. Anomalous impedance, a phenomenological property of time-variant resistance. An analytic review. Biophys J. 1961 Mar;1:353–372. doi: 10.1016/s0006-3495(61)86894-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nagel W., Essig A. Relationship of transepithelial electrical potential to membrane potentials and conductance ratios in frog skin. J Membr Biol. 1982;69(2):125–136. doi: 10.1007/BF01872272. [DOI] [PubMed] [Google Scholar]
  7. Nagel W., Garcia-Diaz J. F., Essig A. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skins. Pflugers Arch. 1983 Dec;399(4):336–341. doi: 10.1007/BF00652761. [DOI] [PubMed] [Google Scholar]
  8. Schultz S. G., Thompson S. M., Hudson R., Thomas S. R., Suzuki Y. Electrophysiology of Necturus urinary bladder: II. Time-dependent current-voltage relations of the basolateral membranes. J Membr Biol. 1984;79(3):257–269. doi: 10.1007/BF01871064. [DOI] [PubMed] [Google Scholar]
  9. Smith P. G. The low-frequency electrical impedance of the isolated frog skin. Acta Physiol Scand. 1971 Mar;81(3):355–366. doi: 10.1111/j.1748-1716.1971.tb04910.x. [DOI] [PubMed] [Google Scholar]
  10. Suzuki K., Frömter E. The potential and resistance profile of Necturus gallbladder cells. Pflugers Arch. 1977 Oct 19;371(1-2):109–117. doi: 10.1007/BF00580778. [DOI] [PubMed] [Google Scholar]
  11. Suzuki K., Kottra G., Kampmann L., Frömter E. Square wave pulse analysis of cellular and paracellular conductance pathways in Necturus gallbladder epithelium. Pflugers Arch. 1982 Oct 1;394(4):302–312. doi: 10.1007/BF00583694. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES