Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1985 Nov;48(5):709–719. doi: 10.1016/S0006-3495(85)83829-7

Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. III. Time-resolved increase in the transmembrane electric potential and modeling of the associated ion fluxes.

S L Helgerson, M K Mathew, D B Bivin, P K Wolber, E Heinz, W Stoeckenius
PMCID: PMC1329396  PMID: 4074833

Abstract

Bacteriorhodopsin functions as an electrogenic, light-driven proton pump in Halobacterium halobium. In cell envelope vesicles, its photocycle kinetics can be correlated with membrane potential. The initial decay rate of the M photocycle intermediate(s) decreases with increasing membrane potential, allowing the construction of a calibration curve. The laser (592.5 nm) was flashed at various time delays following the start of background illumination (592 +/- 25 nm) and transient absorbance changes at 418 nm monitored in cell envelope vesicles. The vesicles were loaded with and suspended in either 3 M NaCl or 3 M KCl buffered with 50 mM HEPES at pH 7.5 and the membrane permeability to protons modified by pretreatment with N,N'-dicyclohexylcarbodiimide. In each case the membrane potential rose with a halftime of approximately 75 ms. The steady-state potential achieved depends on the cation present and the proton permeability of the membrane, i.e., higher potentials are developed in dicyclohexylcarbodiimide treated vesicles or in NaCl media as compared with KCl media. The results are modeled using an irreversible thermodynamics formulation, which assumes a constant driving reaction affinity (Ach) and a variable reaction rate (Jr) for the proton-pumping cycle of bacteriorhodopsin. Additionally, the model includes a voltage-gated, electrogenic Na+/H+ antiporter that is active when vesicles are suspended in NaCl. Estimates for the linear phenomenological coefficients describing the overall proton-pumping cycle (Lr = 3.5 X 10(-11)/mol2/J X g X s), passive cation permeabilities (LHu = 2 X 10(-10), LKu = 2.2 X 10(-10), LNau = 1 X 10(-11)), and the Na+/H+ exchange via the antiporter (Lex = 5 X 10(-11)) have been obtained.

Full text

PDF
709

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arents J. C., van Dekken H., Hellingwerf K. J., Westerhoff H. V. Linear relations between proton current and pH gradient in bacteriorhodopsin liposomes. Biochemistry. 1981 Sep 1;20(18):5114–5123. doi: 10.1021/bi00521a004. [DOI] [PubMed] [Google Scholar]
  2. Becher B., Ebrey T. G. The quantum efficiency for the photochemical conversion of the purple membrane protein. Biophys J. 1977 Feb;17(2):185–191. doi: 10.1016/S0006-3495(77)85636-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eisenbach M., Cooper S., Garty H., Johnstone R. M., Rottenberg H., Caplan S. R. Light-driven sodium transport in sub-bacterial particles of Halobacterium halobium. Biochim Biophys Acta. 1977 Mar 17;465(3):599–613. doi: 10.1016/0005-2736(77)90276-0. [DOI] [PubMed] [Google Scholar]
  4. Govindjee R., Ebrey T. G., Crofts A. R. The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium. Biophys J. 1980 May;30(2):231–242. doi: 10.1016/S0006-3495(80)85091-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Graan T., Ort D. R. Initial events in the regulation of electron transfer in chloroplasts. The role of the membrane potential. J Biol Chem. 1983 Mar 10;258(5):2831–2836. [PubMed] [Google Scholar]
  6. Groma G. I., Helgerson S. L., Wolber P. K., Beece D., Dancsházy Z., Keszthelyi L., Stoeckenius W. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions. Biophys J. 1984 May;45(5):985–992. doi: 10.1016/S0006-3495(84)84243-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hellingwerf K. J., Arents J. C., Scholte B. J., Westerhoff H. V. Bacteriorhodopsin in liposomes. II. Experimental evidence in support of a theoretical model. Biochim Biophys Acta. 1979 Sep 11;547(3):561–582. doi: 10.1016/0005-2728(79)90034-3. [DOI] [PubMed] [Google Scholar]
  9. Johnson J. H., Lewis A., Gogel G. Kinetic resonance Raman spectroscopy of carotenoids: a sensitive kinetic monitor of bacteriorhodopsin mediated membrane potential changes. Biochem Biophys Res Commun. 1981 Nov 16;103(1):182–188. doi: 10.1016/0006-291x(81)91677-6. [DOI] [PubMed] [Google Scholar]
  10. Kuschmitz D., Hess B. On the ratio of the proton and photochemical cycles in bacteriorhodopsin. Biochemistry. 1981 Oct 13;20(21):5950–5957. doi: 10.1021/bi00524a005. [DOI] [PubMed] [Google Scholar]
  11. Lanyi J. K., Helgerson S. L., Silverman M. P. Relationship between proton motive force and potassium ion transport in Halobacterium halobium envelope vesicles. Arch Biochem Biophys. 1979 Apr 1;193(2):329–339. doi: 10.1016/0003-9861(79)90037-7. [DOI] [PubMed] [Google Scholar]
  12. Lanyi J. K., MacDonald R. E. Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium cell envelope vesicles. Biochemistry. 1976 Oct 19;15(21):4608–4614. doi: 10.1021/bi00666a010. [DOI] [PubMed] [Google Scholar]
  13. Lanyi J. K., Silverman M. P. Gating effects in Halobacterium halobium membrane transport. J Biol Chem. 1979 Jun 10;254(11):4750–4755. [PubMed] [Google Scholar]
  14. Lanyi J. K. Studies of the electron transport chain of extremely halophilic bacteria. VII. Solubilization properties of menadione reductase. J Biol Chem. 1972 May 25;247(10):3001–3007. [PubMed] [Google Scholar]
  15. Lozier R. H., Niederberger W., Bogomolni R. A., Hwang S., Stoeckenius W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim Biophys Acta. 1976 Sep 13;440(3):545–556. doi: 10.1016/0005-2728(76)90041-4. [DOI] [PubMed] [Google Scholar]
  16. Michel H., Oesterhelt D. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry. 1980 Sep 30;19(20):4607–4614. doi: 10.1021/bi00561a011. [DOI] [PubMed] [Google Scholar]
  17. Moroney P. M., Scholes T. A., Hinkle P. C. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase. Biochemistry. 1984 Oct 9;23(21):4991–4997. doi: 10.1021/bi00316a025. [DOI] [PubMed] [Google Scholar]
  18. Ohno K., Govindjee R., Ebrey T. G. Blue light effect on proton pumping by bacteriorhodopsin. Biophys J. 1983 Aug;43(2):251–254. doi: 10.1016/S0006-3495(83)84347-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ort D. R., Parson W. W. The quantum yield of flash-induced proton release by bacteriorhodopsin-containing membrane fragments. Biophys J. 1979 Feb;25(2 Pt 1):341–353. doi: 10.1016/s0006-3495(79)85296-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Renthal R., Lanyi J. K. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Biochemistry. 1976 May 18;15(10):2136–2143. doi: 10.1021/bi00655a017. [DOI] [PubMed] [Google Scholar]
  21. Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
  22. Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
  23. Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1979 Mar 14;505(3-4):215–278. doi: 10.1016/0304-4173(79)90006-5. [DOI] [PubMed] [Google Scholar]
  24. Szalontai B. Light induced membrane potential changes in Halobacterium halobium observed with high time resolution by resonance Raman spectroscopy. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1126–1130. doi: 10.1016/0006-291x(81)91940-9. [DOI] [PubMed] [Google Scholar]
  25. Westerhoff H. V., Hellingwerf K. J., Arents J. C., Scholte B. J., Van Dam K. Mosaic nonequilibrium thermodynamics describes biological energy transduction. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3554–3558. doi: 10.1073/pnas.78.6.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Westerhoff H. V., Scholte B. J., Hellingwerf K. J. Bacteriorhodopsin in liposomes. I. A description using irreversible thermodynamics. Biochim Biophys Acta. 1979 Sep 11;547(3):544–560. doi: 10.1016/0005-2728(79)90033-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES