Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brann L., Dewey M. M., Baldwin E. A., Brink P., Walcott B. Requirements for in vitro shortening and lengthening of isolated thick filaments of Limulus striated muscle. Nature. 1979 May 17;279(5710):256–257. doi: 10.1038/279256a0. [DOI] [PubMed] [Google Scholar]
- Dewey M. M., Brink P., Colflesh D. E., Gaylinn B., Fan S. F., Anapol F. Limulus striated muscle provides an unusual model for muscle contraction. Adv Exp Med Biol. 1984;170:67–87. doi: 10.1007/978-1-4684-4703-3_7. [DOI] [PubMed] [Google Scholar]
- Dewey M. M., Colflesh D., Brink P., Fan S., Gaylinn B., Gural N. Structural, functional, and chemical changes in the contractile apparatus of Limulus striated muscle as a function of sarcomere shortening and tension development. Soc Gen Physiol Ser. 1982;37:53–72. [PubMed] [Google Scholar]
- Dewey M. M., Levine R. J., Colflesh D. E. Structure of Limulus striated muscle. The contractile apparatus at various sarcomere lengths. J Cell Biol. 1973 Sep;58(3):574–593. doi: 10.1083/jcb.58.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan S. F., Dewey M. M., Colflesh D., Brink P., Chu B. Dynamic laser light scattering of papain-treated thick filaments from limulus striated muscle in suspension. Adv Exp Med Biol. 1984;170:89–92. doi: 10.1007/978-1-4684-4703-3_8. [DOI] [PubMed] [Google Scholar]
- Fan S. F., Dewey M. M., Colflesh D., Gaylinn B., Greguski R. A., Chu B. The active cross-bridge motions of isolated thick filaments from myosin-regulated muscles detected by quasi-elastic light scattering. Biophys J. 1985 Jun;47(6):809–821. doi: 10.1016/S0006-3495(85)83985-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hotani H. Light microscope study of mixed helices in reconstituted Salmonella flagella. J Mol Biol. 1976 Sep 5;106(1):151–166. doi: 10.1016/0022-2836(76)90305-3. [DOI] [PubMed] [Google Scholar]
- Kamiya R., Asakura S., Wakabayashi K., Namba K. Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J Mol Biol. 1979 Jul 15;131(4):725–742. doi: 10.1016/0022-2836(79)90199-2. [DOI] [PubMed] [Google Scholar]
- Kubota K., Chu B., Fan S. F., Dewey M. M., Brink P., Colflesh D. E. Quasi-elastic light scattering of suspensions of Limulus thick myofilaments in relaxed (long) activated and rerelaxed (short) states. J Mol Biol. 1983 May 25;166(3):329–340. doi: 10.1016/s0022-2836(83)80088-6. [DOI] [PubMed] [Google Scholar]
- Lehman W., Szent-Györgyi A. G. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol. 1975 Jul;66(1):1–30. doi: 10.1085/jgp.66.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macnab R. M., Ornston M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol. 1977 May 5;112(1):1–30. doi: 10.1016/s0022-2836(77)80153-8. [DOI] [PubMed] [Google Scholar]
- Macnab R., Koshland D. E., Jr Bacterial motility and chemotaxis: light-induced tumbling response and visualization of individual flagella. J Mol Biol. 1974 Apr 15;84(3):399–406. doi: 10.1016/0022-2836(74)90448-3. [DOI] [PubMed] [Google Scholar]
- Nagashima H., Asakura S. Dark-field light microscopic study of the flexibility of F-actin complexes. J Mol Biol. 1980 Jan 15;136(2):169–182. doi: 10.1016/0022-2836(80)90311-3. [DOI] [PubMed] [Google Scholar]
- Sellers J. R. Phosphorylation-dependent regulation of Limulus myosin. J Biol Chem. 1981 Sep 10;256(17):9274–9278. [PubMed] [Google Scholar]