Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Feb;49(2):411–424. doi: 10.1016/S0006-3495(86)83651-7

The reaction of N-(1-pyrene)maleimide with sarcoplasmic reticulum.

S Papp, G Kracke, N Joshi, A Martonosi
PMCID: PMC1329481  PMID: 2937461

Abstract

The excimer fluorescence of the adduct of N-(1-pyrene)maleimide (PMI) with the Ca2+-ATPase was proposed as a probe of ATPase-ATPase interactions in sarcoplasmic reticulum (Lüdi and Hasselbach, Eur. J. Biochem., 1983, 130:5-8). We tested this proposition by analyzing the spectral properties and stoichiometry of the adducts of pyrenemaleimide with sarcoplasmic reticulum and with dithiothreitol and by comparing the effects of various detergents on the excimer fluorescence of the two adducts, with their influence on the sedimentation characteristics, ATPase activity, and light scattering of the pyrenemaleimide-labeled sarcoplasmic reticulum. These studies indicate that pyrenemaleimide reacts nearly randomly with several SH groups on the Ca2+-ATPase, and suggest that the observed excimer fluorescence of pyrenemaleimide-labeled sarcoplasmic reticulum may reflect intramolecular phenomena rather than ATPase-ATPase interactions. Further work is required to establish the relative contribution of intra- and intermolecular mechanisms to the excimer fluorescence.

Full text

PDF
411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida L. M., Vaz W. L., Zachariasse K. A., Madeira V. M. Fluidity of sarcoplasmic reticulum membranes investigated with dipyrenylpropane, an intramolecular excimer probe. Biochemistry. 1982 Nov 9;21(23):5972–5977. doi: 10.1021/bi00266a038. [DOI] [PubMed] [Google Scholar]
  2. Almeida L. M., Vaz W. L., Zachariasse K. A., Madeira V. M. Modulation of sarcoplasmic reticulum Ca2+-pump activity by membrane fluidity. Biochemistry. 1984 Sep 25;23(20):4714–4720. doi: 10.1021/bi00315a029. [DOI] [PubMed] [Google Scholar]
  3. Andersen J. P., Møller J. V., Jørgensen P. L. The functional unit of sarcoplasmic reticulum Ca2+-ATPase. Active site titration and fluorescence measurements. J Biol Chem. 1982 Jul 25;257(14):8300–8307. [PubMed] [Google Scholar]
  4. Chiesi M. Cross-linking agents induce rapid calcium release from skeletal muscle sarcoplasmic reticulum. Biochemistry. 1984 Aug 14;23(17):3899–3907. doi: 10.1021/bi00312a017. [DOI] [PubMed] [Google Scholar]
  5. Ikemoto N., Nelson R. W. Oligomeric regulation of the later reaction steps of the sarcoplasmic reticulum calcium ATPase. J Biol Chem. 1984 Oct 10;259(19):11790–11797. [PubMed] [Google Scholar]
  6. Jilka R. L., Martonosi A. N., Tillack T. W. Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles. J Biol Chem. 1975 Sep 25;250(18):7511–7524. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lehrer S. S., Graceffa P., Betteridge D. Conformational dynamics of tropomyosin in solution: evidence for two conformational states. Ann N Y Acad Sci. 1981;366:285–299. doi: 10.1111/j.1749-6632.1981.tb20762.x. [DOI] [PubMed] [Google Scholar]
  10. Lüdi H., Hasselbach W. Excimer formation of ATPase from sarcoplasmic reticulum labeled with N-(3-pyrene)maleinimide. Eur J Biochem. 1983 Jan 17;130(1):5–8. doi: 10.1111/j.1432-1033.1983.tb07108.x. [DOI] [PubMed] [Google Scholar]
  11. Lüdi H., Hasselbach W. Fluorescence studies on N-(3-pyrene)maleinimide-labeled sarcoplasmic reticulum ATPase in native and solubilized membranes. Z Naturforsch C. 1982 Nov-Dec;37(11-12):1170–1179. doi: 10.1515/znc-1982-11-1220. [DOI] [PubMed] [Google Scholar]
  12. Martin D. W., Tanford C., Reynolds J. A. Monomeric solubilized sarcoplasmic reticulum Ca pump protein: demonstration of Ca binding and dissociation coupled to ATP hydrolysis. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6623–6626. doi: 10.1073/pnas.81.21.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin D. W., Tanford C. Solubilized monomeric sarcoplasmic reticulum Ca pump protein. Phosphorylation by inorganic phosphate. FEBS Lett. 1984 Nov 5;177(1):146–150. doi: 10.1016/0014-5793(84)81000-5. [DOI] [PubMed] [Google Scholar]
  14. Martonosi A. N. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev. 1984 Oct;64(4):1240–1320. doi: 10.1152/physrev.1984.64.4.1240. [DOI] [PubMed] [Google Scholar]
  15. Martonosi A., Kracke G., Taylor K. A., Dux L., Peracchia C. The regulation of the Ca2+ transport activity of sarcoplasmic reticulum. Soc Gen Physiol Ser. 1985;39:57–85. [PubMed] [Google Scholar]
  16. Martonosi A. The effect of ATP upon the reactivity of SH groups in sarcoplasmic reticulum membranes. FEBS Lett. 1976 Aug 15;67(2):153–155. doi: 10.1016/0014-5793(76)80354-7. [DOI] [PubMed] [Google Scholar]
  17. Møller J. V., Andersen J. P., le Maire M. The sarcoplasmic reticulum Ca2+-ATPase. Mol Cell Biochem. 1982 Feb 5;42(2):83–107. doi: 10.1007/BF00222696. [DOI] [PubMed] [Google Scholar]
  18. Nakamura H., Jilka R. L., Boland R., Martonosi A. N. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids. J Biol Chem. 1976 Sep 10;251(17):5414–5423. [PubMed] [Google Scholar]
  19. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  20. Vanderkooi J. M., Ierokomas A., Nakamura H., Martonosi A. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry. 1977 Apr 5;16(7):1262–1267. doi: 10.1021/bi00626a003. [DOI] [PubMed] [Google Scholar]
  21. Watanabe T., Inesi G. Structural effects of substrate utilization on the adenosinetriphosphatase chains of sarcoplasmic reticulum. Biochemistry. 1982 Jul 6;21(14):3254–3259. doi: 10.1021/bi00257a001. [DOI] [PubMed] [Google Scholar]
  22. Weltman J. K., Szaro R. P., Frackelton A. R., Jr, Dowben R. M., Bunting J. R., Cathou B. E. N-(3-pyrene)maleimide: a long lifetime fluorescent sulfhydryl reagent. J Biol Chem. 1973 May 10;248(9):3173–3177. [PubMed] [Google Scholar]
  23. Yamamoto T., Yantorno R. E., Tonomura Y. Comparative study of the kinetic and structural properties of monomeric and oligomeric forms of sarcoplasmic reticulum ATPase. J Biochem. 1984 Jun;95(6):1783–1791. doi: 10.1093/oxfordjournals.jbchem.a134791. [DOI] [PubMed] [Google Scholar]
  24. Yantorno R. E., Yamamoto T., Tonomura Y. Energy transfer between fluorescent dyes attached to Ca2+,Mg2+-ATPase in the sarcoplasmic reticulum. J Biochem. 1983 Oct;94(4):1137–1145. doi: 10.1093/oxfordjournals.jbchem.a134458. [DOI] [PubMed] [Google Scholar]
  25. Zachariasse K. A., Vaz W. L., Sotomayor C., Kühnle W. Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Biochim Biophys Acta. 1982 Jun 14;688(2):323–332. doi: 10.1016/0005-2736(82)90343-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES