Abstract
The problem of singlet excitation kinetics and dynamics, especially at high excitation intensities, among a small number of chromophores of a given system has been addressed. A specific scheme for the kinetics is suggested and applied to CPII, a small chlorophyll (Chl)a/b antenna complex the fluorescence lifetime of which has been reported to be independent of excitation intensity over a wide intensity range of picosecond pulses. We have modeled the kinetics from the point of view that Chla molecules in CPII are Förster coupled so that a second excitation received by the group of Chla's either creates a state with two localized excitons or raises the first one to a doubly excited state. The data on CPII can be understood on the basis of a kinetic model that does not exclude exciton annihilation during the excitation pulse. The implied annihilation rate is consistent with our theoretical estimates of that rate obtained by applying excitation transfer theory to pairs of molecules both initially excited.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAY Z., PEARLSTEIN R. M. A THEORY OF ENERGY TRANSFER IN THE PHOTOSYNTHETIC UNIT. Proc Natl Acad Sci U S A. 1963 Dec;50:1071–1078. doi: 10.1073/pnas.50.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRODY S. S., RABINOWITCH E. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science. 1957 Mar 22;125(3247):555–555. doi: 10.1126/science.125.3247.555. [DOI] [PubMed] [Google Scholar]
- Breton J., Geacintov N. E. Picosecond fluorescence kinetics and fast energy transfer processes in photosynthetic membranes. Biochim Biophys Acta. 1980 Dec 22;594(1):1–32. doi: 10.1016/0304-4173(80)90011-7. [DOI] [PubMed] [Google Scholar]
- Guard-Friar D., MacColl R., Berns D. S., Wittmershaus B., Knox R. S. Picosecond fluorescence of cryptomonad biliproteins. Effects of excitation intensity and the fluorescence decay times of phycocyanin 612, phycocyanin 645, and phycoerythrin 545. Biophys J. 1985 Jun;47(6):787–793. doi: 10.1016/S0006-3495(85)83982-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikegami I. Fluorescence changes related in the primary photochemical reaction in the P-700-enriched particles isolated from spinach chloroplasts. Biochim Biophys Acta. 1976 Nov 9;449(2):245–258. doi: 10.1016/0005-2728(76)90137-7. [DOI] [PubMed] [Google Scholar]
- MacColl R., Guard-Friar D. Phycocyanin 645. The chromophore assay of phycocyanin 645 from the cryptomonad protozoa Chroomonas species. J Biol Chem. 1983 Dec 10;258(23):14327–14329. [PubMed] [Google Scholar]
- Nordlund T. M., Knox W. H. Lifetime of fluorescence from light-harvesting chlorophyll a/b proteins. Excitation intensity dependence. Biophys J. 1981 Oct;36(1):193–201. doi: 10.1016/S0006-3495(81)84723-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa T., Obata F., Shibata K. Two pigment proteins in spinach chloroplasts. Biochim Biophys Acta. 1966 Feb 7;112(2):223–234. doi: 10.1016/0926-6585(66)90323-2. [DOI] [PubMed] [Google Scholar]
- Paillotin G., Swenberg C. E., Breton J., Geacintov N. E. Analysis of picosecond laser induced fluorescence phenomena in photosynthetic membranes utilizing a master equation approach. Biophys J. 1979 Mar;25(3):513–533. doi: 10.1016/S0006-3495(79)85320-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornber J. P., Gregory R. P., Smith C. A., Bailey J. L. Studies on the nature of the chloroplast lamella. I. Preparation and some properties of two chlorophyll-protein complexes. Biochemistry. 1967 Feb;6(2):391–396. doi: 10.1021/bi00854a004. [DOI] [PubMed] [Google Scholar]
- Van Metter R. L. Excitation energy transfer in the light-harvesting chlorophyll a/b.protein. Biochim Biophys Acta. 1977 Dec 23;462(3):642–658. doi: 10.1016/0005-2728(77)90107-4. [DOI] [PubMed] [Google Scholar]