Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Feb;49(2):571–577. doi: 10.1016/S0006-3495(86)83668-2

Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.

J F Hinton, R E Koeppe 2nd, D Shungu, W L Whaley, J A Paczkowski, F S Millett
PMCID: PMC1329498  PMID: 2420383

Abstract

Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidin A, B, or C under these experimental conditions. In this system, the Tl+ equilibrium binding constant is 582 +/- 20 M-1 for gramicidin 1949 +/- 100 M-1 for gramicidin B, and 390 +/- 20 M-1 for gramicidin C. Gramicidin B not only binds Tl+ more strongly but it is also in a different conformational state than that of A and C, as shown by Circular Dichroism spectroscopy. The 205Tl NMR technique can now be extended to determinations of binding constants of other cations to gramicidin by competition studies using a 205Tl probe.

Full text

PDF
571

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Gramicidin channels. Annu Rev Physiol. 1984;46:531–548. doi: 10.1146/annurev.ph.46.030184.002531. [DOI] [PubMed] [Google Scholar]
  2. Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bamberg E., Apell H. J., Alpes H. Structure of the gramicidin A channel: discrimination between the piL,D and the beta helix by electrical measurements with lipid bilayer membranes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2402–2406. doi: 10.1073/pnas.74.6.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
  5. Cavieres J. D., Ellory J. C. Thallium and the sodium pump in human red cells. J Physiol. 1974 Nov;243(1):243–266. doi: 10.1113/jphysiol.1974.sp010752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Finkelstein A., Andersen O. S. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J Membr Biol. 1981 Apr 30;59(3):155–171. doi: 10.1007/BF01875422. [DOI] [PubMed] [Google Scholar]
  7. Hagiwara S., Eaton D. C., Stuart A. E., Rosenthal N. P. Cation selectivity of the resting membrane of squid axon. J Membr Biol. 1972;9(4):373–384. [PubMed] [Google Scholar]
  8. Henderson R., Ritchie J. M., Strichartz G. R. Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3936–3940. doi: 10.1073/pnas.71.10.3936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henze R., Neher E., Trapane T. L., Urry D. W. Dielectric relaxation studies of ionic processes in lysolecithin-packaged gramicidin channels. J Membr Biol. 1982;64(3):233–239. doi: 10.1007/BF01870890. [DOI] [PubMed] [Google Scholar]
  10. Hinton J. F., Young G., Millett F. S. Thallous ion interaction with gramicidin incorporated in micelles studied by thallium-205 nuclear magnetic resonance. Biochemistry. 1982 Feb 16;21(4):651–654. doi: 10.1021/bi00533a009. [DOI] [PubMed] [Google Scholar]
  11. Jordan P. C. Electrostatic modeling of ion pores. Energy barriers and electric field profiles. Biophys J. 1982 Aug;39(2):157–164. doi: 10.1016/S0006-3495(82)84503-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Killian J. A., de Kruijff B., van Echteld C. J., Verkleij A. J., Leunissen-Bijvelt J., de Gier J. Mixtures of gramicidin and lysophosphatidylcholine form lamellar structures. Biochim Biophys Acta. 1983 Feb 9;728(1):141–144. doi: 10.1016/0005-2736(83)90446-7. [DOI] [PubMed] [Google Scholar]
  13. Koeppe R. E., 2nd, Paczkowski J. A., Whaley W. L. Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry. 1985 Jun 4;24(12):2822–2826. doi: 10.1021/bi00333a002. [DOI] [PubMed] [Google Scholar]
  14. Levitt D. G. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. Biophys J. 1978 May;22(2):221–248. doi: 10.1016/S0006-3495(78)85486-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mackay D. H., Berens P. H., Wilson K. R., Hagler A. T. Structure and dynamics of ion transport through gramicidin A. Biophys J. 1984 Aug;46(2):229–248. doi: 10.1016/S0006-3495(84)84016-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mazet J. L., Andersen O. S., Koeppe R. E., 2nd Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophane, and tyrosine substitutions at positions 1 and 11. Biophys J. 1984 Jan;45(1):263–276. doi: 10.1016/S0006-3495(84)84153-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morrow J. S., Veatch W. R., Stryer L. Transmembrane channel activity of gramicidin A analogs: effects of modification and deletion of the amino-terminal residue. J Mol Biol. 1979 Aug 25;132(4):733–738. doi: 10.1016/0022-2836(79)90386-3. [DOI] [PubMed] [Google Scholar]
  18. Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
  19. Prasad K. U., Trapane T. L., Busath D., Szabo G., Urry D. W. Synthesis and characterization of (1-13C) Phe9 gramicidin A. Effects of side chain variations. Int J Pept Protein Res. 1983 Sep;22(3):341–347. doi: 10.1111/j.1399-3011.1983.tb02100.x. [DOI] [PubMed] [Google Scholar]
  20. Prasad K. U., Trapane T. L., Busath D., Szabo G., Urry D. W. Synthesis and characterization of 1-(13) C-D X Leu12, 14 gramicidin A. Int J Pept Protein Res. 1982 Feb;19(2):162–171. [PubMed] [Google Scholar]
  21. SARGES R., WITKOP B. GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. J Am Chem Soc. 1965 May 5;87:2011–2020. doi: 10.1021/ja01087a027. [DOI] [PubMed] [Google Scholar]
  22. Spisni A., Khaled M. A., Urry D. W. Temperature-induced incorporation of gramicidin A into lysolecithin micelles demonstrated by 13C NMR. FEBS Lett. 1979 Jun 15;102(2):321–324. doi: 10.1016/0014-5793(79)80027-7. [DOI] [PubMed] [Google Scholar]
  23. Spisni A., Pasquali-Ronchetti I., Casali E., Lindner L., Cavatorta P., Masotti L., Urry D. W. Supramolecular organization of lysophosphatidylcholine-packaged Gramicidin A. Biochim Biophys Acta. 1983 Jul 13;732(1):58–68. doi: 10.1016/0005-2736(83)90186-4. [DOI] [PubMed] [Google Scholar]
  24. Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
  25. Urry D. W., Goodall M. C., Glickson J. D., Mayers D. F. The gramicidin A transmembrane channel: characteristics of head-to-head dimerized (L,D) helices. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1907–1911. doi: 10.1073/pnas.68.8.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Urry D. W., Long M. M., Jacobs M., Harris R. D. Conformation and molecular mechanisms of carriers and channels. Ann N Y Acad Sci. 1975 Dec 30;264:203–220. doi: 10.1111/j.1749-6632.1975.tb31484.x. [DOI] [PubMed] [Google Scholar]
  27. Urry D. W., Prasad K. U., Trapane T. L. Location of monovalent cation binding sites in the gramicidin channel. Proc Natl Acad Sci U S A. 1982 Jan;79(2):390–394. doi: 10.1073/pnas.79.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Urry D. W., Spisni A., Khaled A. Characterization of micellar-packaged gramicidin A channels. Biochem Biophys Res Commun. 1979 Jun 13;88(3):940–949. doi: 10.1016/0006-291x(79)91499-2. [DOI] [PubMed] [Google Scholar]
  29. Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Urry D. W., Trapane T. L., Prasad K. U. Is the gramicidin a transmembrane channel single-stranded or double-stranded helix? A simple unequivocal determination. Science. 1983 Sep 9;221(4615):1064–1067. doi: 10.1126/science.221.4615.1064. [DOI] [PubMed] [Google Scholar]
  31. Veatch W. R., Durkin J. T. Binding of thallium and other cations to the gramicidin A channel. Equilibrium dialysis study of gramicidin in phosphatidylcholine vesicles. J Mol Biol. 1980 Nov 15;143(4):411–417. doi: 10.1016/0022-2836(80)90220-x. [DOI] [PubMed] [Google Scholar]
  32. Wallace B. A., Veatch W. R., Blout E. R. Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry. 1981 Sep 29;20(20):5754–5760. doi: 10.1021/bi00523a018. [DOI] [PubMed] [Google Scholar]
  33. Weinstein S., Wallace B. A., Blout E. R., Morrow J. S., Veatch W. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4230–4234. doi: 10.1073/pnas.76.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES