Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Apr;49(4):857–868. doi: 10.1016/S0006-3495(86)83715-8

A model study of intracellular oxygen gradients in a myoglobin-containing skeletal muscle fiber.

W J Federspiel
PMCID: PMC1329538  PMID: 3719069

Abstract

A theoretical two-dimensional model is used to investigate oxygen gradients in a red skeletal muscle fiber. The model describes the steady state, free and myoglobin-facilitated diffusion of oxygen into a respiring cylindrical muscle fiber cross section. The oxygen tension at the sarcolemma is assumed to vary along the sarcolemma as an approximation to the discrete capillary oxygen supply around the fiber. Maximal oxygen gradients are studied by considering parameters relevant to a maximally-respiring red muscle fiber. The model predicts that angular variations in the oxygen tension imposed at the sarcolemma due to the discrete capillary sources do not penetrate deeply into the fiber over a range of physiological values for myoglobin concentration, diffusion coefficients, number of surrounding capillaries, and oxygen tension level at the sarcolemma. Also, the oxygen tension in the core of the fiber is determined by the average oxygen tension at the sarcolemma. The drop in oxygen tension from fiber periphery to core, however, does depend significantly on the myoglobin concentration, the oxygen tension level at the sarcolemma, and the oxygen and myoglobin diffusivities. This dependence is summarized by calculating the minimum average sarcolemmal oxygen tension for maximal respiration without the development of an intracellular anoxic region. For a myoglobin-rich muscle fiber (0.5 mM myoglobin), the model predicts that maximal oxygen consumption can proceed with a relatively flat (less than 5 mm Hg) oxygen tension drop from fiber periphery to core over a large range for diffusion coefficients.

Full text

PDF
857

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cole R. P. Myoglobin function in exercising skeletal muscle. Science. 1982 Apr 30;216(4545):523–525. doi: 10.1126/science.7071598. [DOI] [PubMed] [Google Scholar]
  2. Ellsworth M. L., Pittman R. N. Heterogeneity of oxygen diffusion through hamster striated muscles. Am J Physiol. 1984 Feb;246(2 Pt 2):H161–H167. doi: 10.1152/ajpheart.1984.246.2.H161. [DOI] [PubMed] [Google Scholar]
  3. Fletcher J. E. On facilitated oxygen diffusion in muscle tissues. Biophys J. 1980 Mar;29(3):437–458. doi: 10.1016/S0006-3495(80)85145-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gayeski T. E., Honig C. R. Direct measurement of intracellular O2 gradients; role of convection and myoglobin. Adv Exp Med Biol. 1983;159:613–621. doi: 10.1007/978-1-4684-7790-0_54. [DOI] [PubMed] [Google Scholar]
  5. Goldstick T. K., Ciuryla V. T., Zuckerman L. Diffusion of oxygen in plasma and blood. Adv Exp Med Biol. 1976;75:183–190. doi: 10.1007/978-1-4684-3273-2_23. [DOI] [PubMed] [Google Scholar]
  6. Honig C. R., Gayeski T. E., Federspiel W., Clark A., Jr, Clark P. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv Exp Med Biol. 1984;169:23–38. doi: 10.1007/978-1-4684-1188-1_2. [DOI] [PubMed] [Google Scholar]
  7. Jones D. P., Kennedy F. G. Intracellular O2 gradients in cardiac myocytes. Lack of a role for myoglobin in facilitation of intracellular O2 diffusion. Biochem Biophys Res Commun. 1982 Mar 30;105(2):419–424. doi: 10.1016/0006-291x(82)91450-4. [DOI] [PubMed] [Google Scholar]
  8. Kawashiro T., Nüsse W., Scheid P. Determination of diffusivity of oxygen and carbon dioxide in respiring tissue: results in rat skeletal muscle. Pflugers Arch. 1975 Sep 9;359(3):231–251. doi: 10.1007/BF00587382. [DOI] [PubMed] [Google Scholar]
  9. Kreuzer F. Facilitated diffusion of oxygen and its possible significance; a review. Respir Physiol. 1970 Apr;9(1):1–30. doi: 10.1016/0034-5687(70)90002-2. [DOI] [PubMed] [Google Scholar]
  10. Livingston D. J., La Mar G. N., Brown W. D. Myoglobin diffusion in bovine heart muscle. Science. 1983 Apr 1;220(4592):71–73. doi: 10.1126/science.6828881. [DOI] [PubMed] [Google Scholar]
  11. MacDougall J. D., McCabe M. Diffusion coefficient of oxygen through tissues. Nature. 1967 Sep 9;215(5106):1173–1174. doi: 10.1038/2151173a0. [DOI] [PubMed] [Google Scholar]
  12. Murray J. D. On the role of myoglobin in muscle respiration. J Theor Biol. 1974 Sep;47(1):115–126. doi: 10.1016/0022-5193(74)90102-7. [DOI] [PubMed] [Google Scholar]
  13. Riveros-Moreno V., Wittenberg J. B. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem. 1972 Feb 10;247(3):895–901. [PubMed] [Google Scholar]
  14. Snell F. M. Facilitated transport of oxygen through solutions of hemoglobin. J Theor Biol. 1965 May;8(3):469–479. doi: 10.1016/0022-5193(65)90022-6. [DOI] [PubMed] [Google Scholar]
  15. Spaan J. A., Kreuzer F., van Wely F. K. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions. Pflugers Arch. 1980 Apr;384(3):241–251. doi: 10.1007/BF00584558. [DOI] [PubMed] [Google Scholar]
  16. Taylor B. A., Murray J. D. Effect of the rate of oxygen consumption on muscle respiration. J Math Biol. 1977 Feb 28;4(1):1–20. doi: 10.1007/BF00276348. [DOI] [PubMed] [Google Scholar]
  17. Wittenberg B. A., Wittenberg J. B., Caldwell P. R. Role of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem. 1975 Dec 10;250(23):9038–9043. [PubMed] [Google Scholar]
  18. Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]
  19. Wyman J. Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem. 1966 Jan 10;241(1):115–121. [PubMed] [Google Scholar]
  20. de Koning J., Hoofd L. J., Kreuzer F. Oxygen transport and the function of myoglobin. Theoretical model and experiments in chicken gizzard smooth muscle. Pflugers Arch. 1981 Mar;389(3):211–217. doi: 10.1007/BF00584781. [DOI] [PubMed] [Google Scholar]
  21. van Ouwerkerk H. J. Facilitated diffusion in a tissue cylinder with an anoxic region. Pflugers Arch. 1977;372(3):221–230. doi: 10.1007/BF01063856. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES