Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Jul;50(1):55–61. doi: 10.1016/S0006-3495(86)83438-5

Gated quenching of intrinsic fluorescence and phosphorescence of globular proteins. An extended model.

B Somogyi, J A Norman, A Rosenberg
PMCID: PMC1329658  PMID: 3730507

Abstract

We present a theoretical model to account for the quenching data of macromolecular fluorescence and phosphorescence when the accessibility to the quencher is gated by a dynamic mechanism coupled to the fluctuation of the macromolecular matrix. We show that the model currently in use to interpret gated quenching processes gives only approximate results in both qualitative and quantitative terms, and it can be regarded as a specific case of the presented model. We show that the gating dynamics affect both the apparent accessibility (alpha obs) and Ksv values obtained by the modified Stern-Volmer plot. The effect of gating on alpha obs and Ksv depends upon the relative rate of gating compared to the excited state lifetime. The model allows us to predict the effect of viscosity on quenching if it takes place by a gated mechanism. The prediction can and is, in this case, compared to the existing data on glycerol effects on acrylamide quenching of the tryptophan fluorescence in RNAse T1. The result shows that a simple gated model is not compatible with the observed quenching behavior.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  2. Barksdale A. D., Rosenberg A. Acquisition and interpretation of hydrogen exchange data from peptides, polymers, and proteins. Methods Biochem Anal. 1982;28:1–113. doi: 10.1002/9780470110485.ch1. [DOI] [PubMed] [Google Scholar]
  3. Calhoun D. B., Vanderkooi J. M., Englander S. W. Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry. 1983 Mar 29;22(7):1533–1539. doi: 10.1021/bi00276a003. [DOI] [PubMed] [Google Scholar]
  4. Calhoun D. B., Vanderkooi J. M., Woodrow G. V., 3rd, Englander S. W. Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry. 1983 Mar 29;22(7):1526–1532. doi: 10.1021/bi00276a002. [DOI] [PubMed] [Google Scholar]
  5. Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eftink M. R., Ghiron C. A. Dynamics of a protein matrix revealed by fluorescence quenching. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3290–3294. doi: 10.1073/pnas.72.9.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eftink M. R., Ghiron C. A. On the analysis of the temperature and viscosity dependence of fluorescence-quenching reactions with proteins. Arch Biochem Biophys. 1981 Jul;209(2):706–709. doi: 10.1016/0003-9861(81)90332-5. [DOI] [PubMed] [Google Scholar]
  8. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  9. Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
  10. Gratton E., Jameson D. M., Weber G., Alpert B. A model of dynamic quenching of fluorescence in globular proteins. Biophys J. 1984 Apr;45(4):789–794. doi: 10.1016/S0006-3495(84)84223-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haas E., Steinberg I. Z. Intramolecular dynamics of chain molecules monitored by fluctuations in efficiency of excitation energy transfer. A theoretical study. Biophys J. 1984 Oct;46(4):429–437. doi: 10.1016/S0006-3495(84)84040-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagaman K. A., Eftink M. R. Fluorescence quenching of Trp-314 of liver alcohol dehydrogenase by oxygen. Biophys Chem. 1984 Oct;20(3):201–207. doi: 10.1016/0301-4622(84)87024-6. [DOI] [PubMed] [Google Scholar]
  13. Jameson D. M., Gratton E., Weber G., Alpert B. Oxygen distribution and migration within Mbdes Fe and Hbdes Fe. Multifrequency phase and modulation fluorometry study. Biophys J. 1984 Apr;45(4):795–803. doi: 10.1016/S0006-3495(84)84224-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karplus M., McCammon J. A. The internal dynamics of globular proteins. CRC Crit Rev Biochem. 1981;9(4):293–349. doi: 10.3109/10409238109105437. [DOI] [PubMed] [Google Scholar]
  15. Lakowicz J. R., Weber G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry. 1973 Oct 9;12(21):4161–4170. doi: 10.1021/bi00745a020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lakowicz J. R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973 Oct 9;12(21):4171–4179. doi: 10.1021/bi00745a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee B. Calculation of volume fluctuation for globular protein models. Proc Natl Acad Sci U S A. 1983 Jan;80(2):622–626. doi: 10.1073/pnas.80.2.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  19. Lehrer S. S. The selective quenching of tryptophan fluorescence in proteins by iodide ion: lysozyme in the presence and absence of substrate. Biochem Biophys Res Commun. 1967 Dec 15;29(5):767–772. doi: 10.1016/0006-291x(67)90284-7. [DOI] [PubMed] [Google Scholar]
  20. McCammon J. A., Northrup S. H. Gated binding of ligands to proteins. Nature. 1981 Sep 24;293(5830):316–317. doi: 10.1038/293316a0. [DOI] [PubMed] [Google Scholar]
  21. Parak F., Knapp E. W. A consistent picture of protein dynamics. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7088–7092. doi: 10.1073/pnas.81.22.7088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Somogyi B., Matkó J., Papp S., Hevessy J., Welch G. R., Damjanovich S. Förster-type energy transfer as a probe for changes in local fluctuations of the protein matrix. Biochemistry. 1984 Jul 17;23(15):3403–3411. doi: 10.1021/bi00310a004. [DOI] [PubMed] [Google Scholar]
  23. Somogyi B., Papp S., Rosenberg A., Seres I., Matkó J., Welch G. R., Nagy P. A double-quenching method for studying protein dynamics: separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophors. Biochemistry. 1985 Nov 5;24(23):6674–6679. doi: 10.1021/bi00344a056. [DOI] [PubMed] [Google Scholar]
  24. Somogyi B., Welch G. R., Damjanovich S. The dynamic basis of energy transduction in enzymes. Biochim Biophys Acta. 1984 Sep 6;768(2):81–112. doi: 10.1016/0304-4173(84)90001-6. [DOI] [PubMed] [Google Scholar]
  25. Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]
  26. Xu G., Weber G. Dynamics and time-averaged chemical potential of proteins: importance in oligomer association. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5268–5271. doi: 10.1073/pnas.79.17.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES