Abstract
A simple mathematical model that was developed by Charles S. Peskin (unpublished manuscript) for a single nephron is introduced and then extended to reflect the decreasing loop of Henle population as a function of increasing medullary depth. In the model, if all the loops turn at the same depth, the concentrating capability is limited by a factor of e over plasma osmolality. However, a decreasing loop population causes a multiplier effect that greatly enhances the concentrating capability. Using the loop distribution of the rat, the model produces a sigmoidal osmolality profile similar to the profiles found in tissue-slice studies of rat kidneys. These model calculations suggest that the decreasing nephron population found in vivo may be an important factor in the concentrating mechanism of the mammalian kidney.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Foster D. M., Jacquez J. A. Comparison using central core model of renal medulla of the rabbit and rat. Am J Physiol. 1978 May;234(5):F402–F414. doi: 10.1152/ajprenal.1978.234.5.F402. [DOI] [PubMed] [Google Scholar]
- Hai M. A., Thomas S. The time-course of changes in renal tissue composition during lysine vasopressin infusion in the rat. Pflugers Arch. 1969;310(4):297–317. doi: 10.1007/BF00587241. [DOI] [PubMed] [Google Scholar]
- Imai M. Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies differences among rabbits, rats, and hamsters. Pflugers Arch. 1984 Dec;402(4):393–401. doi: 10.1007/BF00583940. [DOI] [PubMed] [Google Scholar]
- Imai M., Hayashi M., Araki M. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 1984 Dec;402(4):385–392. doi: 10.1007/BF00583939. [DOI] [PubMed] [Google Scholar]
- Knepper M. A., Danielson R. A., Saidel G. M., Post R. S. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 1977 Nov;12(5):313–323. doi: 10.1038/ki.1977.118. [DOI] [PubMed] [Google Scholar]
- Kokko J. P., Rector F. C., Jr Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 1972 Oct;2(4):214–223. doi: 10.1038/ki.1972.97. [DOI] [PubMed] [Google Scholar]
- LASSITER W. E., GOTTSCHALK C. W., MYLLE M. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol. 1961 Jun;200:1139–1147. doi: 10.1152/ajplegacy.1961.200.6.1139. [DOI] [PubMed] [Google Scholar]
- Marsh D. J. Computer simulation of renal countercurrent systems. Fed Proc. 1983 May 15;42(8):2398–2404. [PubMed] [Google Scholar]
- Moore L. C., Marsh D. J., Martin C. M. Loop of Henle during the water-to-antidiuresis transition in Brattleboro rats. Am J Physiol. 1980 Jul;239(1):F72–F83. doi: 10.1152/ajprenal.1980.239.1.F72. [DOI] [PubMed] [Google Scholar]
- Rocha A. S., Kokko J. P. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest. 1973 Mar;52(3):612–623. doi: 10.1172/JCI107223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHMIDT-NIELSEN B., O'DELL R. Structure and concentrating mechanism in the mammalian kidney. Am J Physiol. 1961 Jun;200:1119–1124. doi: 10.1152/ajplegacy.1961.200.6.1119. [DOI] [PubMed] [Google Scholar]
- Sasaki Y., Suwa N. Functional model of inner medulla of rabbit kidney based on its structural principle. Tohoku J Exp Med. 1969 May;98(1):33–63. doi: 10.1620/tjem.98.33. [DOI] [PubMed] [Google Scholar]
- Stephenson J. L. Concentrating engines and the kidney. I. Central core model of the renal medulla. Biophys J. 1973 Jun;13(6):512–545. doi: 10.1016/S0006-3495(73)86005-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson J. L. Concentrating engines and the kidney. II. Multisolute central core systems. Biophys J. 1973 Jun;13(6):546–567. doi: 10.1016/S0006-3495(73)86006-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson J. L. Concentrating engines and the kidney. III. Canonical mass balance equation for multinephron models of the renal medulla. Biophys J. 1976 Nov;16(11):1273–1286. doi: 10.1016/S0006-3495(76)85773-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson J. L. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 1972 Aug;2(2):85–94. doi: 10.1038/ki.1972.75. [DOI] [PubMed] [Google Scholar]
- Stephenson J. L., Mejia R., Tewarson R. P. Model of solute and water movement in the kidney. Proc Natl Acad Sci U S A. 1976 Jan;73(1):252–256. doi: 10.1073/pnas.73.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson J. L. The renal concentrating mechanism: fundamental theoretical concepts. Fed Proc. 1983 May 15;42(8):2386–2391. [PubMed] [Google Scholar]