Abstract
Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure (up to 46 kbar) for samples incubated at 2°C and for nonincubated DPPC samples subjected to equally high pressure. The nature of the transition from the GII gel phase of the hydrated lipid into the subgel phase on incubation is entirely different from that of the transition from the GII gel phase into the GIII gel phase of the nonincubated lipid. The GIII gel phase has a monoclinic interchain packing, while the subgel phase exhibits a triclinic interchain structure. It is shown that pressure cannot induce the transition from the GII gel phase to the subgel phase; however, it does stabilize the subgel phase above the subtransition temperature. The mechanism for the formation of the subgel phase and the complex phase behavior of the gel phase of DPPC are rationalized in terms of the dynamic properties of the acyl chains of the lipid molecule.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cameron D. G., Mantsch H. H. Metastability and polymorphism in the gel phase of 1,2-dipalmitoyl-3-SN-phosphatidylcholine. A Fourier transform infrared study of the subtransition. Biophys J. 1982 May;38(2):175–184. doi: 10.1016/S0006-3495(82)84544-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casal H. L., Mantsch H. H. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta. 1984 Dec 4;779(4):381–401. doi: 10.1016/0304-4157(84)90017-0. [DOI] [PubMed] [Google Scholar]
- Chen S. C., Sturtevant J. M., Gaffney B. J. Scanning calorimetric evidence for a third phase transition in phosphatidylcholine bilayers. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5060–5063. doi: 10.1073/pnas.77.9.5060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Füldner H. H. Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Biochemistry. 1981 Sep 29;20(20):5707–5710. doi: 10.1021/bi00523a011. [DOI] [PubMed] [Google Scholar]
- Gaber B. P., Yager P., Peticolas W. L. Interpretation of biomembrane structure by Raman difference spectroscopy. Nature of the endothermic transitions in phosphatidylcholines. Biophys J. 1978 Feb;21(2):161–176. doi: 10.1016/S0006-3495(78)85516-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagle J. F., Wilkinson D. A. Dilatometric studies of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry. 1982 Aug 3;21(16):3817–3821. doi: 10.1021/bi00259a015. [DOI] [PubMed] [Google Scholar]
- Wong P. T., Mantsch H. H. A low-temperature structural phase transition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers in the gel phase. Biochim Biophys Acta. 1983 Jul 13;732(1):92–98. doi: 10.1016/0005-2736(83)90190-6. [DOI] [PubMed] [Google Scholar]
- Wong P. T., Mantsch H. H. Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study. Biochemistry. 1985 Jul 16;24(15):4091–4096. doi: 10.1021/bi00336a043. [DOI] [PubMed] [Google Scholar]
- Wong P. T. Raman spectroscopy of thermotropic and high-pressure phases of aqueous phospholipid dispersions. Annu Rev Biophys Bioeng. 1984;13:1–24. doi: 10.1146/annurev.bb.13.060184.000245. [DOI] [PubMed] [Google Scholar]
- Wu W. G., Chong P. L., Huang C. H. Pressure effect on the rate of crystalline phase formation of L-alpha-dipalmitoylphosphatidylcholines in multilamellar dispersions. Biophys J. 1985 Feb;47(2 Pt 1):237–242. doi: 10.1016/s0006-3495(85)83896-0. [DOI] [PMC free article] [PubMed] [Google Scholar]