Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Sep;50(3):385–389. doi: 10.1016/S0006-3495(86)83474-9

Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle.

H Higuchi, Y Umazume
PMCID: PMC1329713  PMID: 3489489

Abstract

The 1,0 lattice spacing d1,0 in chemically and mechanically skinned single fibers of frog muscle was measured at various sarcomere lengths, L, in the range from L = 2.1 to 6.0 microns by an x-ray diffraction method. In chemically skinned fibers, d1,0 decreased with a similar slope to that of mechanically skinned fibers up to L congruent to 3 microns, but beyond this point d1,0 steeply decreased with further stretching. This steep decrease in d1,0 could be ascribed mainly to an increase in the compressing force associated with the longitudinal extension of a remnant of the sarcolemma. In mechanically skinned fibers, the gradual decrease in d1,0 continued beyond filament overlap (L greater than or equal to 3.5 microns) and was highly proportional to a resting tension. This decrease in d1,0 at L greater than or equal to 3.5 microns could be ascribed to an increase in the force exerted by lateral elastic components, which is proportional to the longitudinal resting tension. A conceptual model is proposed of a network structure of elastic components in a sarcomere.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ELLIOTT G. F., WORTHINGTON C. R. A SMALL-ANGLE OPTICALLY FOCUSING X-RAY DIFFRACTION CAMERA IN BIOLOGICAL RESEARCH. I. J Ultrastruct Res. 1963 Aug;49:166–170. doi: 10.1016/s0022-5320(63)80044-1. [DOI] [PubMed] [Google Scholar]
  2. Elliott G. F. Donnan and osmotic effects in muscle fibres without membranes. J Mechanochem Cell Motil. 1973 May;2(1):83–89. [PubMed] [Google Scholar]
  3. Godt R. E., Maughan D. W. Swelling of skinned muscle fibers of the frog. Experimental observations. Biophys J. 1977 Aug;19(2):103–116. doi: 10.1016/S0006-3495(77)85573-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
  5. Higuchi H., Umazume Y. Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the A- and I-bands. Biophys J. 1985 Jul;48(1):137–147. doi: 10.1016/S0006-3495(85)83767-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Magid A., Reedy M. K. X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method. Biophys J. 1980 Apr;30(1):27–40. doi: 10.1016/S0006-3495(80)85074-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Magid A., Ting-Beall H. P., Carvell M., Kontis T., Lucaveche C. Connecting filaments, core filaments, and side-struts: a proposal to add three new load-bearing structures to the sliding filament model. Adv Exp Med Biol. 1984;170:307–328. doi: 10.1007/978-1-4684-4703-3_26. [DOI] [PubMed] [Google Scholar]
  8. Matsubara I., Elliott G. F. X-ray diffraction studies on skinned single fibres of frog skeletal muscle. J Mol Biol. 1972 Dec 30;72(3):657–669. doi: 10.1016/0022-2836(72)90183-0. [DOI] [PubMed] [Google Scholar]
  9. Matsubara I., Goldman Y. E., Simmons R. M. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J Mol Biol. 1984 Feb 15;173(1):15–33. doi: 10.1016/0022-2836(84)90401-7. [DOI] [PubMed] [Google Scholar]
  10. PODOLSKY R. J. THE MAXIMUM SARCOMERE LENGTH FOR CONTRACTION OF ISOLATED MYOFIBRILS. J Physiol. 1964 Jan;170:110–123. doi: 10.1113/jphysiol.1964.sp007317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schoenberg M. Geometrical factors influencing muscle force development. II. Radial forces. Biophys J. 1980 Apr;30(1):69–77. doi: 10.1016/S0006-3495(80)85077-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Toyoda N., Maruyama K. Fine structure of connectin nets in cardiac myofibrils. J Biochem. 1978 Jul;84(1):239–241. doi: 10.1093/oxfordjournals.jbchem.a132114. [DOI] [PubMed] [Google Scholar]
  13. Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES