Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Aug;50(2):329–338. doi: 10.1016/S0006-3495(86)83466-X

Charge movements measured during transverse-tubular uncoupling in frog skeletal muscle.

D T Campbell
PMCID: PMC1329749  PMID: 3488769

Abstract

Capacity transients and slow asymmetric charge-movements are measured in frog skeletal muscle using the Vaseline-gap voltage-clamp technique. Capacity transients show a rapid phase lasting 10-30 microseconds, due to the charging of the surface membrane capacitance, and a slower phase lasting several milliseconds, consistent with the charging of the transverse tubular system (T-system). Exposure to isotonic CsF caused the ratio of the slowly-charging capacitance (Cslow) to the fast-charging capacitance to decline by 88 +/- 9% (n = 16). Electron micrographs of four fibers treated with CsF show disruption and disorganization of the T-system and sarcoplasmic reticulum membranes and a greater than 90% decrease in the number of dyads and triads. The role of CsF was investigated: Fibers exposed to CsF internally or externally, exhibit slower and less complete loss of Cslow than fibers exposed both internally and externally. Little loss of Cslow occurs during the external exposure to CsF. The bulk of loss occurs only after the fiber is returned to Ca++-containing solution. Elevated external Ca++ causes more rapid and more complete loss of Cslow. The time-course of Cslow loss is gradual, occurring over a period of 10 min to 2 h. The progressive loss of Cslow is accompanied by a progressive decline in the peak of the slow asymmetric charge-movement and a progressive slowing of charge movement kinetics. These effects are qualitatively accounted for by including gradual tubular uncoupling in a distributed model of charge movement proposed by B. Simon and K. G. Beam (1985, J. Gen. Physiol., 85:21-42).

Full text

PDF
329

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Peachey L. D. Reconstruction of the action potential of frog sartorius muscle. J Physiol. 1973 Nov;235(1):103–131. doi: 10.1113/jphysiol.1973.sp010380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almers W., Fink R., Palade P. T. Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol. 1981 Mar;312:177–207. doi: 10.1113/jphysiol.1981.sp013623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Almers W. Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol. 1978;82:96–190. doi: 10.1007/BFb0030498. [DOI] [PubMed] [Google Scholar]
  4. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  6. Bastian J., Nakajima S. Action potential in the transverse tubules and its role in the activation of skeletal muscle. J Gen Physiol. 1974 Feb;63(2):257–278. doi: 10.1085/jgp.63.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell D. T., Hahin R. Altered sodium and gating current kinetics in frog skeletal muscle caused by low external pH. J Gen Physiol. 1984 Nov;84(5):771–788. doi: 10.1085/jgp.84.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell D. T. Sodium channel gating currents in frog skeletal muscle. J Gen Physiol. 1983 Nov;82(5):679–701. doi: 10.1085/jgp.82.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Collins C. A., Rojas E., Suarez-Isla B. A. Activation and inactivation characteristics of the sodium permeability in muscle fibres from Rana temporaria. J Physiol. 1982 Mar;324:297–318. doi: 10.1113/jphysiol.1982.sp014114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eisenberg B., Eisenberg R. S. Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker. J Cell Biol. 1968 Nov;39(2):451–467. doi: 10.1083/jcb.39.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Franzini-Armstrong C., Venosa R. A., Horowicz P. Morphology and accessibility of the 'transverse' tubular system in frog sartorius muscle after glycerol treatment. J Membr Biol. 1973;14(3):197–212. doi: 10.1007/BF01868078. [DOI] [PubMed] [Google Scholar]
  13. Heiny J. A., Ashcroft F. M., Vergara J. T-system optical signals associated with inward rectification in skeletal muscle. Nature. 1983 Jan 13;301(5896):164–166. doi: 10.1038/301164a0. [DOI] [PubMed] [Google Scholar]
  14. Heiny J. A., Vergara J. Optical signals from surface and T system membranes in skeletal muscle fibers. Experiments with the potentiometric dye NK2367. J Gen Physiol. 1982 Aug;80(2):203–230. doi: 10.1085/jgp.80.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hille B., Campbell D. T. An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol. 1976 Mar;67(3):265–293. doi: 10.1085/jgp.67.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horowicz P., Schneider M. F. Membrane charge moved at contraction thresholds in skeletal muscle fibres. J Physiol. 1981 May;314:595–633. doi: 10.1113/jphysiol.1981.sp013726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kovács L., Ríos E., Schneider M. F. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature. 1979 May 31;279(5712):391–396. doi: 10.1038/279391a0. [DOI] [PubMed] [Google Scholar]
  18. Mandrino M. Voltage-clamp experiments on frog single skeletal muscle fibres: evidence for a tubular sodium current. J Physiol. 1977 Aug;269(3):605–625. doi: 10.1113/jphysiol.1977.sp011918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moore L. E., Tsai T. D. Ion conductances of the surface and transverse tubular membranes of skeletal muscle. J Membr Biol. 1983;73(3):217–226. doi: 10.1007/BF01870536. [DOI] [PubMed] [Google Scholar]
  20. Pappone P. A. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J Physiol. 1980 Sep;306:377–410. doi: 10.1113/jphysiol.1980.sp013403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  22. Simon B. J., Beam K. G. Slow charge movement in mammalian skeletal muscle. J Gen Physiol. 1985 Jan;85(1):1–19. doi: 10.1085/jgp.85.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simon B. J., Beam K. G. The influence of transverse tubular delays on the kinetics of charge movement in mammalian skeletal muscle. J Gen Physiol. 1985 Jan;85(1):21–42. doi: 10.1085/jgp.85.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Valdiosera R., Clausen C., Eisenberg R. S. Impedance of frog skeletal muscle fibers in various solutions. J Gen Physiol. 1974 Apr;63(4):460–491. doi: 10.1085/jgp.63.4.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vergara J., Bezanilla F., Salzberg B. M. Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions. J Gen Physiol. 1978 Dec;72(6):775–800. doi: 10.1085/jgp.72.6.775. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES