Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Dec;50(6):1053–1059. doi: 10.1016/S0006-3495(86)83549-4

Effects of anesthetic tetradecenols on phosphatidylcholine phase transitions. Implications for the mechanism of the bilayer pretransition.

T J O'Leary, P D Ross, I W Levin
PMCID: PMC1329779  PMID: 3801568

Abstract

The effects of cis- and trans-9,10-tetradecenols on the phase transitions of dimyristoyl-, dipalmitoyl-, and distearoyl-phosphatidylcholines were investigated using high sensitivity scanning calorimetry and Raman spectroscopy. Both alcohols lowered the gel to liquid crystalline phase transition temperatures for all three phosphatidylcholines, with cis-tetradecenol showing a considerably greater effect than trans-tetradecenol in each case. While both alcohols increased the temperature of the dimyristoylphosphatidylcholine pretransition, and decreased the temperature of the distearoylphosphatidylcholine pretransition, cis-tetradecenol lowered the temperature of the dipalmitoylphosphatidylcholine pretransition, while trans-tetradecenol dramatically raised the pretransition temperature. These results are interpreted in terms of the reduction in gel (L beta) phase chain tilt and changes in the ease of acyl chain trans-gauche isomerization which are introduced by the alcohols, and the consequent effects of these changes on the pretransition and the gel to liquid crystalline phase transition. The data clearly show that caution is necessary in applying information on lipid-anesthetic interactions obtained from model membranes to the problem of clinical anesthesia, since qualitatively different results may be obtained when lipids of differing acyl chain lengths are employed. Superficial interpretation of such data might lead to erroneous conclusions.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berde C. B., Andersen H. C., Hudson B. S. A theory of the effects of head-group structure and chain unsaturation on the chain melting transition of phospholipid dispersions. Biochemistry. 1980 Sep 2;19(18):4279–4293. doi: 10.1021/bi00559a021. [DOI] [PubMed] [Google Scholar]
  2. Chen S. C., Sturtevant J. M. Thermotropic behavior of bilayers formed from mixed-chain phosphatidylcholines. Biochemistry. 1981 Feb 17;20(4):713–718. doi: 10.1021/bi00507a007. [DOI] [PubMed] [Google Scholar]
  3. Chowdhry B. Z., Lipka G., Dalziel A. W., Sturtevant J. M. Multicomponent phase transitions of diacylphosphatidylethanolamine dispersions. Biophys J. 1984 May;45(5):901–904. doi: 10.1016/S0006-3495(84)84236-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis P. J., Keough K. M. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J. 1985 Dec;48(6):915–918. doi: 10.1016/S0006-3495(85)83854-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Falkovitz M. S., Seul M., Frisch H. L., McConnell H. M. Theory of periodic structures in lipid bilayer membranes. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3918–3921. doi: 10.1073/pnas.79.12.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Levin I. W., Bush S. F. Evidence for acyl chain trans/gauche isomerization during the thermal pretransition of dipalmitoyl phosphatidylcholine bilayer dispersions. Biochim Biophys Acta. 1981 Feb 6;640(3):760–766. doi: 10.1016/0005-2736(81)90106-1. [DOI] [PubMed] [Google Scholar]
  7. Marder M., Frisch H. L., Langer J. S., McConnell H. M. Theory of the intermediate rippled phase of phospholipid bilayers. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6559–6561. doi: 10.1073/pnas.81.20.6559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mason J. T., Huang C., Biltonen R. L. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1981 Oct 13;20(21):6086–6092. doi: 10.1021/bi00524a026. [DOI] [PubMed] [Google Scholar]
  9. McIntosh T. J. Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J. 1980 Feb;29(2):237–245. doi: 10.1016/S0006-3495(80)85128-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McIntosh T. J., Simon S. A., MacDonald R. C. The organization of n-alkanes in lipid bilayers. Biochim Biophys Acta. 1980 Apr 24;597(3):445–463. doi: 10.1016/0005-2736(80)90219-9. [DOI] [PubMed] [Google Scholar]
  11. Mountcastle D. B., Biltonen R. L., Halsey M. J. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4906–4910. doi: 10.1073/pnas.75.10.4906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Leary T. J. Effects of small nonpolar molecules on membrane compressibility and permeability. A theoretical study of the effects of anesthetic gases. Biophys Chem. 1982 Jul;15(4):299–310. doi: 10.1016/0301-4622(82)80013-6. [DOI] [PubMed] [Google Scholar]
  13. O'Leary T. J., Ross P. D., Levin I. W. Effects of anesthetic and nonanesthetic steroids on dipalmitoylphosphatidylcholine liposomes: a calorimetric and Raman spectroscopic investigation. Biochemistry. 1984 Sep 25;23(20):4636–4641. doi: 10.1021/bi00315a019. [DOI] [PubMed] [Google Scholar]
  14. Pringle M. J., Miller K. W. Structural isomers of tetradecenol discriminate between the lipid fluidity and phase transition theories of anesthesia. Biochem Biophys Res Commun. 1978 Dec 14;85(3):1192–1198. doi: 10.1016/0006-291x(78)90668-x. [DOI] [PubMed] [Google Scholar]
  15. Rand R. P., Chapman D., Larsson K. Tilted hydrocarbon chains of dipalmitoyl lecithin become perpendicular to the bilayer before melting. Biophys J. 1975 Nov;15(11):1117–1124. doi: 10.1016/S0006-3495(75)85888-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roth S. H. Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol. 1979;19:159–178. doi: 10.1146/annurev.pa.19.040179.001111. [DOI] [PubMed] [Google Scholar]
  17. Rowe E. S. Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim Biophys Acta. 1985 Mar 14;813(2):321–330. doi: 10.1016/0005-2736(85)90248-2. [DOI] [PubMed] [Google Scholar]
  18. Schullery S. E., Seder T. A., Weinstein D. A., Bryant D. A. Differential thermal analysis of dipalmitoylphosphatidylcholine--fatty acid mixtures. Biochemistry. 1981 Nov 24;20(24):6818–6824. doi: 10.1021/bi00527a012. [DOI] [PubMed] [Google Scholar]
  19. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  20. Stamatoff J., Feuer B., Guggenheim H. J., Tellez G., Yamane T. Amplitude of rippling in the P beta phase of dipalmitoylphosphatidylcholine bilayers. Biophys J. 1982 Jun;38(3):217–226. doi: 10.1016/S0006-3495(82)84551-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thewalt J. L., Tulloch A. P., Cushley R. J. A deuterium NMR study of labelled n-alkanol anesthetics in a model membrane. Chem Phys Lipids. 1986 Jan;39(1-2):93–107. doi: 10.1016/0009-3084(86)90103-9. [DOI] [PubMed] [Google Scholar]
  22. Thewalt J. L., Wassall S. R., Gorrissen H., Cushley R. J. Deuterium NMR study of the effect of n-alkanol anesthetics on a model membrane system. Biochim Biophys Acta. 1985 Jul 25;817(2):355–365. doi: 10.1016/0005-2736(85)90038-0. [DOI] [PubMed] [Google Scholar]
  23. Trudell J. R. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology. 1977 Jan;46(1):5–10. doi: 10.1097/00000542-197701000-00003. [DOI] [PubMed] [Google Scholar]
  24. Yellin N., Levin I. W. Cooperative unit size in the gel-liquid crystalline phase transition of dipalmitoyl phosphatidylcholine-water multilayers: an estimate from Raman spectroscopy. Biochim Biophys Acta. 1977 Aug 1;468(3):490–494. doi: 10.1016/0005-2736(77)90298-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES