Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1986 Nov;50(5):805–813. doi: 10.1016/S0006-3495(86)83521-4

Fluid waves in renal tubules.

T Sakai, D A Craig, A S Wexler, D J Marsh
PMCID: PMC1329805  PMID: 3790686

Abstract

Autoregulation of renal blood flow is ineffective when arterial pressure perturbations occur at frequencies above 0.05 Hz. To determine whether wave propagation velocity to the macula densa is rate limiting, we estimated compliances of the proximal tubule and the loop of Henle, and used these values in a model of pressure and flow as functions of time and distance in the nephron. Compliances were estimated from measurements of pressures and flows in early proximal, late proximal, and early distal tubules in rats under normal and Ringer-loaded conditions. A model of steady pressure and flow in a compliant, reabsorbing tubule was fitted to these results. The transient model was a set of nonlinear, hyperbolic partial differential equations with split, nonlinear boundary conditions, and was solved with finite difference methods. The loop of Henle compliance was larger than the proximal tubule compliance, and impulses in glomerular filtration rate were attenuated in magnitude and delayed in time in the loop of Henle. Simulated step forcings revealed a similar pattern. Periodic variations of GFR were attenuated at frequencies greater than 0.05 Hz, and there was a delay of 5 s between variations in GFR and macula densa flow rate. The high compliance of the loop slows wave propagation to the macular densa and reduces the amplitude of high frequency waves originating in the glomerulus, but other parts of the signal chain also contribute to the slow response of macula densa feedback.

Full text

PDF
805

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  2. Blantz R. C., Konnen K. S. Relation of distal tubular delivery and reabsorptive rate to nephron filtration. Am J Physiol. 1977 Oct;233(4):F315–F324. doi: 10.1152/ajprenal.1977.233.4.F315. [DOI] [PubMed] [Google Scholar]
  3. Blinowska K., Marsh D. J. Ultra- and circadian fluctuations in arterial pressure and electromyogram in conscious dogs. Am J Physiol. 1985 Dec;249(6 Pt 2):R720–R725. doi: 10.1152/ajpregu.1985.249.6.R720. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Troy J. L., Daugharty T. M. Pressures in cortical structures of the rat kidney. Am J Physiol. 1972 Feb;222(2):246–251. doi: 10.1152/ajplegacy.1972.222.2.246. [DOI] [PubMed] [Google Scholar]
  5. Cortell S., Gennari F. J., Davidman M., Bossert W. H., Schwartz W. B. A definition of proximal and distal tubular compliance. Practical and theoretical implications. J Clin Invest. 1973 Sep;52(9):2330–2339. doi: 10.1172/JCI107422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am J Physiol. 1957 May;189(2):323–328. doi: 10.1152/ajplegacy.1957.189.2.323. [DOI] [PubMed] [Google Scholar]
  7. Jacobson H. R. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J Clin Invest. 1979 Mar;63(3):410–418. doi: 10.1172/JCI109317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koh Y. G., Baines A. D. Pressure-flow relationships in Henle's loops and long collapsible rubber tubes. Kidney Int. 1974 Jan;5(1):30–38. doi: 10.1038/ki.1974.4. [DOI] [PubMed] [Google Scholar]
  9. Kunau R. T., Jr, Webb H. L., Borman S. C. Characteristics of sodium reabsorption in the loop of Henle and distal tubule. Am J Physiol. 1974 Nov;227(5):1181–1191. doi: 10.1152/ajplegacy.1974.227.5.1181. [DOI] [PubMed] [Google Scholar]
  10. Livnat A., Zehr J. E., Broten T. P. Ultradian oscillations in blood pressure and heart rate in free-running dogs. Am J Physiol. 1984 May;246(5 Pt 2):R817–R824. doi: 10.1152/ajpregu.1984.246.5.R817. [DOI] [PubMed] [Google Scholar]
  11. Marsh D. J., Martin C. M. Effects of diuretic states on collecting duct fluid flow resistance in the hamster kidney. Am J Physiol. 1975 Jul;229(1):13–17. doi: 10.1152/ajplegacy.1975.229.1.13. [DOI] [PubMed] [Google Scholar]
  12. Moore L. C., Schnermann J., Yarimizu S. Feedback mediation of SNGFR autoregulation in hydropenic and DOCA- and salt-loaded rats. Am J Physiol. 1979 Jul;237(1):F63–F74. doi: 10.1152/ajprenal.1979.237.1.F63. [DOI] [PubMed] [Google Scholar]
  13. Navar L. G. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978 May;234(5):F357–F370. doi: 10.1152/ajprenal.1978.234.5.F357. [DOI] [PubMed] [Google Scholar]
  14. Quinn M. D., Marsh D. J. Peritubular capillary control of proximal tubule reabsorption in the rat. Am J Physiol. 1979 May;236(5):F478–F487. doi: 10.1152/ajprenal.1979.236.5.F478. [DOI] [PubMed] [Google Scholar]
  15. Sakai T., Hallman E., Marsh D. J. Frequency domain analysis of renal autoregulation in the rat. Am J Physiol. 1986 Feb;250(2 Pt 2):F364–F373. doi: 10.1152/ajprenal.1986.250.2.F364. [DOI] [PubMed] [Google Scholar]
  16. Schnermann J., Persson A. E., Agerup B. Tubuloglomerular feedback. Nonlinear relation between glomerular hydrostatic pressure and loop of henle perfusion rate. J Clin Invest. 1973 Apr;52(4):862–869. doi: 10.1172/JCI107250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shimada S. G., Marsh D. J. Oscillations in mean arterial blood pressure in conscious dogs. Circ Res. 1979 May;44(5):692–700. doi: 10.1161/01.res.44.5.692. [DOI] [PubMed] [Google Scholar]
  18. Welling L. W., Welling D. J. Physical properties of isolated perfused basement membranes from rabbit loop of Henle. Am J Physiol. 1978 Jan;234(1):F54–F58. doi: 10.1152/ajprenal.1978.234.1.F54. [DOI] [PubMed] [Google Scholar]
  19. Young D. K., Marsh D. J. Pulse wave propagation in rat renal tubules: implications for GFR autoregulation. Am J Physiol. 1981 May;240(5):F446–F458. doi: 10.1152/ajprenal.1981.240.5.F446. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES