Abstract
Fast displacement photocurrents have been reported in bacteriorhodopsin model membranes by several groups of investigators since 1977. A fast component (B1) is associated with positive charge displacement in the direction opposite to that of a physiological proton translocation. A slower component (B2) of opposite polarity is associated with positive charge displacement in the same direction as the proton translocation. Using two slightly different methods for model membrane formation, we observed photosignals with or without a significant B2 component under appropriate conditions. By means of the tunable voltage clamp method of measurement (Hong, F.T., and D. Mauzerall, 1974, Proc. Natl. Acad. Sci. USA, 71:1564-1568) we demonstrated that the time course of the B1 signal is completely predictable by an equivalent circuit containing a chemical capacitance. From the equivalent circuit analysis, we obtained a first-order relaxation time constant of 12.3 +/- 0.7 microseconds at room temperature. We also found a slight temperature dependence of the B1 relaxation with an activation energy of 2.54 +/- 0.24 kcal/mol. We found no pH dependence of the B1 component in the range of 0 to 11, whereas the B2 component is diminishing in a graded manner when the pH is varied from 0 to 10. These results are diametrically different from what reported previously (Drachev, L.A., A.D. Kaulen, L.V. Khitrina, and V.P. Skulachev, 1981, Eur. J. Biochem., 117:461-470). Our results support the interpretation that the B1 component is generated by an intramolecular charge displacement accompanying the light-induced reactions of bacteriorhodopsin and that the B2 component is generated by a process of proton uptake from the intracellular aqueous phase and subsequent release into the same aqueous phase. The impact of the present results on the conventional practice of identifying photointermediates of bacteriorhodopsin by spectroscopic means is discussed.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. T., MURAKAMI M. A NEW RECEPTOR POTENTIAL OF THE MONKEY RETINA WITH NO DETECTABLE LATENCY. Nature. 1964 Feb 8;201:626–628. doi: 10.1038/201626a0. [DOI] [PubMed] [Google Scholar]
- Bamberg E., Fahr A. Photocurrents induced on black lipid membranes by purple membranes: a method of reconstitution and a kinetic study of the photocurrents. Ann N Y Acad Sci. 1980;358:324–327. doi: 10.1111/j.1749-6632.1980.tb15405.x. [DOI] [PubMed] [Google Scholar]
- Bamberg E., Fahr A., Szabo G. Photoelectric properties of the light-driven proton pump bacteriorhodopsin. Soc Gen Physiol Ser. 1984;38:381–394. [PubMed] [Google Scholar]
- Cone R. A. Early receptor potential: photoreversible charge displacement in rhodopsin. Science. 1967 Mar 3;155(3766):1128–1131. doi: 10.1126/science.155.3766.1128. [DOI] [PubMed] [Google Scholar]
- Cone R. A. The early receptor potential of the vertebrate eye. Cold Spring Harb Symp Quant Biol. 1965;30:483–491. doi: 10.1101/sqb.1965.030.01.046. [DOI] [PubMed] [Google Scholar]
- Dancsházy Z., Karvaly B. Incorporation of bacteriorhodopsin into a bilayer lipid membrane; a photoelectric-spectroscopic study. FEBS Lett. 1976 Dec 15;72(1):136–138. doi: 10.1016/0014-5793(76)80829-0. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Frolov V. N., Kaulen A. D., Liberman E. A., Ostroumov S. A., Plakunova V. G., Semenov A. Y., Skulachev V. P. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin. J Biol Chem. 1976 Nov 25;251(22):7059–7065. [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Khitrina L. V., Skulachev V. P. Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin. Eur J Biochem. 1981 Jul;117(3):461–470. doi: 10.1111/j.1432-1033.1981.tb06361.x. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Ostroumov S. A., Skulachev V. P. Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane. FEBS Lett. 1974 Feb 1;39(1):43–45. doi: 10.1016/0014-5793(74)80012-8. [DOI] [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Skulachev V. P. Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis. FEBS Lett. 1978 Mar 1;87(1):161–167. doi: 10.1016/0014-5793(78)80157-4. [DOI] [PubMed] [Google Scholar]
- Druckmann S., Ottolenghi M., Pande A., Pande J., Callender R. H. Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry. 1982 Sep 28;21(20):4953–4959. doi: 10.1021/bi00263a019. [DOI] [PubMed] [Google Scholar]
- Dér A., Hargittai P., Simon J. Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. J Biochem Biophys Methods. 1985 Mar;10(5-6):295–300. doi: 10.1016/0165-022x(85)90063-6. [DOI] [PubMed] [Google Scholar]
- Hagins W. A., Rüppel H. Fast photoelectric effects and the properties of vertebrate photoreceptors as electric cables. Fed Proc. 1971 Jan-Feb;30(1):64–68. [PubMed] [Google Scholar]
- Hong F. T. Charge transfer across pigmented bilayer lipid membrane and its interfaces. Photochem Photobiol. 1976 Aug;24(2):155–189. doi: 10.1111/j.1751-1097.1976.tb06809.x. [DOI] [PubMed] [Google Scholar]
- Hong F. T., Mauzerall D. Interfacial photoreactions and chemical capacitance in lipid bilayers. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1564–1568. doi: 10.1073/pnas.71.4.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong F. T., Montal M. Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale. Biophys J. 1979 Mar;25(3):465–472. doi: 10.1016/S0006-3495(79)85316-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang S. B., Korenbrot J. I., Stoeckenius W. Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates. Biochim Biophys Acta. 1978 May 18;509(2):300–317. doi: 10.1016/0005-2736(78)90049-4. [DOI] [PubMed] [Google Scholar]
- Keszthelyi L. Intramolecular charge shifts during the photoreaction cycle of bacteriorhodopsin. Prog Clin Biol Res. 1984;164:51–71. [PubMed] [Google Scholar]
- Kimura Y., Ikegami A., Stoeckenius W. Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem Photobiol. 1984 Nov;40(5):641–646. doi: 10.1111/j.1751-1097.1984.tb05353.x. [DOI] [PubMed] [Google Scholar]
- Korenstein R., Sherman W. V., Caplan S. R. Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin. Biophys Struct Mech. 1976 Dec 22;2(3):267–276. doi: 10.1007/BF00535372. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K., MacDonald R. E. Light-induced transport in Halobacterium halobium. Methods Enzymol. 1979;56:398–407. doi: 10.1016/0076-6879(79)56038-8. [DOI] [PubMed] [Google Scholar]
- Marinetti T., Mauzerall D. Absolute quantum yields and proof of proton and nonproton transient release and uptake in photoexcited bacteriorhodopsin. Proc Natl Acad Sci U S A. 1983 Jan;80(1):178–180. doi: 10.1073/pnas.80.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mowery P. C., Lozier R. H., Chae Q., Tseng Y. W., Taylor M., Stoeckenius W. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry. 1979 Sep 18;18(19):4100–4107. doi: 10.1021/bi00586a007. [DOI] [PubMed] [Google Scholar]
- Nagle J. F., Tristram-Nagle S. Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol. 1983;74(1):1–14. doi: 10.1007/BF01870590. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
- Ormos P., Dancsházy Z., Keszthelyi L. Electric response of a back photoreaction in the bacteriorhodopsin photocycle. Biophys J. 1980 Aug;31(2):207–213. doi: 10.1016/S0006-3495(80)85051-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAK W. L., CONE R. A. ISOLATION AND IDENTIFICATION OF THE INITIAL PEAK OF THE EARLY RECEPTOR POTENTIAL. Nature. 1964 Nov 28;204:836–838. doi: 10.1038/204836a0. [DOI] [PubMed] [Google Scholar]
- Parodi L. A., Lozier R. H., Bhattacharjee S. M., Nagle J. F. Testing kinetic models for the bacteriorhodopsin photocycle--II. Inclusion of an O to M backreaction. Photochem Photobiol. 1984 Oct;40(4):501–506. doi: 10.1111/j.1751-1097.1984.tb04624.x. [DOI] [PubMed] [Google Scholar]
- Rayfield G. W. Events in proton pumping by bacteriorhodopsin. Biophys J. 1983 Feb;41(2):109–117. doi: 10.1016/S0006-3495(83)84413-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
- Trissl H. W. Electrical responses to light: fast photovoltages of rhodopsin-containing membrane systems and their correlations with the spectral intermediates. Methods Enzymol. 1982;81:431–439. doi: 10.1016/s0076-6879(82)81060-4. [DOI] [PubMed] [Google Scholar]
- Trissl H. W., Montal M. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature. 1977 Apr 14;266(5603):655–657. doi: 10.1038/266655a0. [DOI] [PubMed] [Google Scholar]
- Trissl H. W. The concept of chemical capacitance, A critique. Biophys J. 1981 Feb;33(2):233–242. doi: 10.1016/S0006-3495(81)84884-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
