Abstract
Ion-DNA interactions are discussed and the applied magnetic field strength dependence of water proton spin-lattice relaxation rates is used to study the Mn(II)-DNA interaction both qualitatively and quantitatively. Associations in which the manganese II (Mn(II)) ion is completely immobilized on the DNA are identified as well as a range of associations in which the ion is only partially reorientationally restricted. Quantitative analysis of the strength of the association in which manganese is immobilized is carried out both with and without a counter-ion condensation correction for electrostatic attraction of the mobile ions. From competition experiments with manganese the relative strengths of the interactions of magnesium and calcium with DNA are found to be identical but less than that of manganese with DNA and the affinity of lithium for DNA is found to be slightly higher than that of sodium. The data demonstrate that the reduced mobility of nonsite-bound ions may have a significant effect on DNA-ion binding analyses performed using magnetic resonance and relaxation methods.
Full text
PDF![669](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/7c6a785d75de/biophysj00174-0111.png)
![670](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/7054f9c6361a/biophysj00174-0112.png)
![671](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/48b33c70ba9a/biophysj00174-0113.png)
![672](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/f94a26cf5674/biophysj00174-0114.png)
![673](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/d0744f1f53ef/biophysj00174-0115.png)
![674](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/9d1310286ad6/biophysj00174-0116.png)
![675](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/349f48b9fab7/biophysj00174-0117.png)
![676](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bff/1329845/4adc21ffd2a9/biophysj00174-0118.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. F., Record M. T., Jr, Hart P. A. Sodium-23 NMR studies of cation-DNA interactions. Biophys Chem. 1978 Jan;7(4):301–316. doi: 10.1016/0301-4622(78)85007-8. [DOI] [PubMed] [Google Scholar]
- EISINGER J., FAWAZ-ESTRUP F., SHULMAN R. G. BINDING OF MN2+ TO NUCLEIC ACIDS. J Chem Phys. 1965 Jan 1;42:43–53. doi: 10.1063/1.1695717. [DOI] [PubMed] [Google Scholar]
- Granot J., Feigon J., Kearns D. R. Interactions of DNA with divalent metal ions. I. 31P-NMR studies. Biopolymers. 1982 Jan;21(1):181–201. doi: 10.1002/bip.360210115. [DOI] [PubMed] [Google Scholar]
- Granot J., Kearns D. R. Interactions of DNA with divalent metal ions. II. Proton relaxation enhancement studies. Biopolymers. 1982 Jan;21(1):203–218. doi: 10.1002/bip.360210116. [DOI] [PubMed] [Google Scholar]
- Hallenga K., Koenig S. H. Protein rotational relaxation as studied by solvent 1H and 2H magnetic relaxation. Biochemistry. 1976 Sep 21;15(19):4255–4264. doi: 10.1021/bi00664a019. [DOI] [PubMed] [Google Scholar]
- Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
- Kennedy S. D., Bryant R. G. Proton magnetic relaxation in aqueous glycerol solutions containing manganese(II) ion. Magn Reson Med. 1985 Feb;2(1):14–19. doi: 10.1002/mrm.1910020103. [DOI] [PubMed] [Google Scholar]
- Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
- Rimai L., Heyde M. E. An investigation by Raman spectroscopy of the base-proton dissociation of ATP in aqueous solution and the interactions of ATP with Zn++ and Mn++. Biochem Biophys Res Commun. 1970 Oct 23;41(2):313–320. doi: 10.1016/0006-291x(70)90505-x. [DOI] [PubMed] [Google Scholar]
- Rimai L., Heyde M. E., Carew E. B. Effect of divalent metal ion binding on the Raman spectrum of ATP in aqueous solution. Biochem Biophys Res Commun. 1970 Jan 23;38(2):231–237. doi: 10.1016/0006-291x(70)90701-1. [DOI] [PubMed] [Google Scholar]
- Rose D. M., Bleam M. L., Record M. T., Bryant R. G. Mg NMR in DNA solutions: Dominance of site binding effects. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6289–6292. doi: 10.1073/pnas.77.11.6289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose D. M., Polnaszek C. F., Bryant R. G. 25Mg-NMR investigations of the magnesium ion-DNA interaction. Biopolymers. 1982 Mar;21(3):653–664. doi: 10.1002/bip.360210312. [DOI] [PubMed] [Google Scholar]
- Thomas J. C., Allison S. A., Appellof C. J., Schurr J. M. Torison dynamics and depolarization of fluorescence of linear macromolecules. II. Fluorescence polarization anisotropy measurements on a clean viral phi 29 DNA. Biophys Chem. 1980 Oct;12(2):177–188. doi: 10.1016/0301-4622(80)80050-0. [DOI] [PubMed] [Google Scholar]
- Van Steenwinkel R., Campagnari F., Merlini M. Interaction of Mn2+ with DNA as studied by proton-relaxation enhancement of solvent water. Biopolymers. 1981 May;20(5):915–923. doi: 10.1002/bip.1981.360200506. [DOI] [PubMed] [Google Scholar]