Abstract
It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin.
Full text
PDF![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/12a0c17ca03c/biophysj00171-0038.png)
![28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/76838a1f89a1/biophysj00171-0039.png)
![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/a47ab6fb219b/biophysj00171-0040.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/91bc958eafc6/biophysj00171-0041.png)
![31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/41ca5ee393a6/biophysj00171-0042.png)
![32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/ea4b8259e429/biophysj00171-0043.png)
![33](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/a4706c9096ae/biophysj00171-0044.png)
![34](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/ed38909c6b23/biophysj00171-0045.png)
![35](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/e33a2f08a447/biophysj00171-0046.png)
![36](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b16e/1329860/a7ba9685e34c/biophysj00171-0047.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen O. S. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements. Biophys J. 1983 Feb;41(2):135–146. doi: 10.1016/S0006-3495(83)84415-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benz R., Janko K. Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim Biophys Acta. 1976 Dec 14;455(3):721–738. doi: 10.1016/0005-2736(76)90043-2. [DOI] [PubMed] [Google Scholar]
- Eisenman G., Hägglund J., Sandblom J., Enos B. The current-voltage behavior of ion channels: important features of the energy profile of the gramicidin channel deduced from the conductance-voltage characteristic in the limit of low ion concentration. Ups J Med Sci. 1980;85(3):247–257. doi: 10.3109/03009738009179195. [DOI] [PubMed] [Google Scholar]
- Eisenman G., Sandblom J. P. Modeling the gramicidin channel: interpretation of experimental data using rate theory. Biophys J. 1984 Jan;45(1):88–90. doi: 10.1016/S0006-3495(84)84119-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Everitt C. T., Haydon D. A. Electrical capacitance of a lipid membrane separating two aqueous phases. J Theor Biol. 1968 Mar;18(3):371–379. doi: 10.1016/0022-5193(68)90084-2. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hladky S. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta. 1972 Aug 9;274(2):294–312. doi: 10.1016/0005-2736(72)90178-2. [DOI] [PubMed] [Google Scholar]
- Hladky S. B. Ion currents through pores. The roles of diffusion and external access steps in determining the currents through narrow pores. Biophys J. 1984 Sep;46(3):293–297. doi: 10.1016/S0006-3495(84)84025-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hladky S. B. The effects of double-layer polarization on the conductance of gramicidin channels. Biophys J. 1985 May;47(5):747–749. doi: 10.1016/S0006-3495(85)83975-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan P. C. Electrostatic modeling of ion pores. Energy barriers and electric field profiles. Biophys J. 1982 Aug;39(2):157–164. doi: 10.1016/S0006-3495(82)84503-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt D. G. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophys J. 1978 May;22(2):209–219. doi: 10.1016/S0006-3495(78)85485-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Läuger P., Lesslauer W., Marti E., Richter J. Electrical properties of bimolecular phospholipid membranes. Biochim Biophys Acta. 1967 Feb 1;135(1):20–32. doi: 10.1016/0005-2736(67)90004-1. [DOI] [PubMed] [Google Scholar]
- Neher E., Sandblom J., Eisenman G. Ionic selectivity, saturation, and block in gramicidin A channels. II. Saturation behavior of single channel conductances and evidence for the existence of multiple binding sites in the channel. J Membr Biol. 1978 Apr 26;40(2):97–116. doi: 10.1007/BF01871143. [DOI] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B. Ion transport in the simplest single file pore. Biochim Biophys Acta. 1979 Jul 5;554(2):410–429. doi: 10.1016/0005-2736(79)90381-x. [DOI] [PubMed] [Google Scholar]
- Walz D., Bamberg E., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection. Biophys J. 1969 Sep;9(9):1150–1159. doi: 10.1016/S0006-3495(69)86442-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White S. H. The surface charge and double layers of thin lipid films formed from neutral lipids. Biochim Biophys Acta. 1973 Oct 25;323(3):343–350. doi: 10.1016/0005-2736(73)90180-6. [DOI] [PubMed] [Google Scholar]