Abstract
The substitution of iron for cobalt in the monomeric insect hemoglobin CTT (Chironomus thummi thummi) III does not alter the Bohr effect for O2-binding. The cobalt substitution in this hemoglobin allows us to identify not only the O-O and Co-O2 stretching mode but also the Co-O-O bending mode by resonance Raman spectroscopy. The assignments were made via 16O2/18O2 isotope exchange. The modes associated with the Co-O-O moiety are pH-dependent. These pH-induced changes of the resonance Raman spectra are correlated with the t = r conformation transition. At high pH (high-affinity state) two unperturbed O-O stretching modes are observed at 1,068 cm-1 (major component) and 1,093 cm-1 (minor component) for the 18O2 complex. These frequencies correspond to split modes at 1,107 cm-1 and 1,136 cm-1 and an unperturbed mode at approximately 1,153 cm-1 for the 16O2 complex. At low pH (low-affinity state) the minor component becomes the major component and vice versa. The Co-O2 stretching frequency varies for approximately 520 cm-1 (pH 5.5) to 537 cm-1 (pH 9.5) indicating a stronger (hence shorter) Co-O2 bond in the high-affinity state. On the other hand, the O-O bond is weakened upon the conversion of the low- to the high-affinity state. The Co-O-O bending mode changes from 390 cm-1 (pH 9.5) to 374 cm-1 (pH 5.5). In the deoxy form the resonance Raman spectra are essentially pH-insensitive except for a vinyl mode at 414 cm-1 (pH 5.5), which is shifted to 416 cm-1 (pH 5.5).
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APPLEBY C. A. The oxygen equilibrium of leghemoglobin. Biochim Biophys Acta. 1962 Jul 2;60:226–235. doi: 10.1016/0006-3002(62)90398-0. [DOI] [PubMed] [Google Scholar]
- Atha D. H., Johnson M. L., Riggs A. F. The linkage between oxygenation and subunit association in human hemoglobin Kansas. Concentration dependence of the oxygen binding equilibria. J Biol Chem. 1979 Dec 25;254(24):12390–12398. [PubMed] [Google Scholar]
- Gersonde K., Kerr E., Yu N. T., Parish D. W., Smith K. M. Resonance Raman investigation of CO-ligated monomeric insect hemoglobins. Direct evidence for reciprocal changes in iron-axial ligand bonds induced by allosteric transitions. J Biol Chem. 1986 Jul 5;261(19):8678–8685. [PubMed] [Google Scholar]
- Gersonde K., Noll L., Gaud H. T., Gill S. J. A calorimetric study of the CO Bohr effect of monomeric haemoglobins. Eur J Biochem. 1976 Mar 1;62(3):577–582. doi: 10.1111/j.1432-1033.1976.tb10192.x. [DOI] [PubMed] [Google Scholar]
- Gersonde K., Overkamp M., Sick H., Trittelvitz E., Junge W. Beta-chain allostery in the frozen quaternary T-structure of haemoglobin M Iwate. Eur J Biochem. 1973 Nov 15;39(2):403–412. doi: 10.1111/j.1432-1033.1973.tb03138.x. [DOI] [PubMed] [Google Scholar]
- Gersonde K., Sick H., Overkamp M., Smith K. M., Parish D. W. Bohr effect in monomeric insect haemoglobins controlled by O2 off-rate and modulated by haem-rotational disorder. Eur J Biochem. 1986 Jun 2;157(2):393–404. doi: 10.1111/j.1432-1033.1986.tb09681.x. [DOI] [PubMed] [Google Scholar]
- Gersonde K., Sick H., Wollmer A., Buse G. Heterotropic allosterism of monomeric haemoglobins of Chironomus thummi thummi. Eur J Biochem. 1972 Jan 31;25(1):181–189. doi: 10.1111/j.1432-1033.1972.tb01683.x. [DOI] [PubMed] [Google Scholar]
- Gersonde K., Twilfer H., Overkamp M. Bohr-effect and pH-dependence of electron spin resonance spectra of a cobalt-substituted monomeric insect haemoglobin. Biophys Struct Mech. 1982;8(3):189–211. doi: 10.1007/BF00535459. [DOI] [PubMed] [Google Scholar]
- Huber R., Epp O., Steigemann W., Formanek H. The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin. Eur J Biochem. 1971 Mar 1;19(1):42–50. doi: 10.1111/j.1432-1033.1971.tb01285.x. [DOI] [PubMed] [Google Scholar]
- Kerr E. A., Yu N. T., Gersonde K., Parish D. W., Smith K. M. Iron-histidine stretching vibration in the deoxy state of insect hemoglobins with different O2 affinities and Bohr effects. J Biol Chem. 1985 Oct 15;260(23):12665–12669. [PubMed] [Google Scholar]
- La Mar G. N., Anderson R. R., Budd D. L., Smith K. M., Langry K. C., Gersonde K., Sick H. Proton nuclear magnetic resonance investigation of the nature of solution conformational equilibria of monomeric insect deoxyhemoglobins. Biochemistry. 1981 Jul 21;20(15):4429–4436. doi: 10.1021/bi00518a030. [DOI] [PubMed] [Google Scholar]
- La Mar G. N., Anderson R. R., Chacko V. P., Gersonde K. High-resolution proton NMR as indicator of a silent mutation in the haem cavity of a monomeric allosteric haemoglobin. Eur J Biochem. 1983 Oct 17;136(1):161–166. doi: 10.1111/j.1432-1033.1983.tb07721.x. [DOI] [PubMed] [Google Scholar]
- La Mar G. N., Budd D. L., Sick H., Gersonde K. Acid Bohr effects in myoglobin characterized by proton NMR hyperfine shifts and oxygen binding studies. Biochim Biophys Acta. 1978 Dec 20;537(2):270–283. doi: 10.1016/0005-2795(78)90510-x. [DOI] [PubMed] [Google Scholar]
- La Mar G. N., Overkamp M., Sick H., Gersonde K. Proton nuclear magnetic resonance hyperfine shifts as indicators of tertiary structural changes accompanying the Bohr effect in monomeric insect hemoglobins. Biochemistry. 1978 Jan 24;17(2):352–361. doi: 10.1021/bi00595a025. [DOI] [PubMed] [Google Scholar]
- La Mar G. N., Smith K. M., Gersonde K., Sick H., Overkamp M. Proton nuclear nagnetic resonance characterization of heme disorder in monomeric insect hemoglobins. J Biol Chem. 1980 Jan 10;255(1):66–70. [PubMed] [Google Scholar]
- La Mar G. N., Viscio D. B., Gersonde K., Sick H. Proton nuclear magnetic resonance study of the rotational position and oscillatory mobility of vinyl groups in allosteric monomeric insect hemoglobins. Biochemistry. 1978 Jan 24;17(2):361–367. doi: 10.1021/bi00595a026. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Mackin H. C., Tsubaki M., Yu N. T. Resonance Raman studies of Co-O2 and O-O stretching vibrations in oxy-cobalt hemes. Biophys J. 1983 Mar;41(3):349–357. doi: 10.1016/S0006-3495(83)84446-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overkamp M., Twilfer H., Gersonde K. Conformation-controlled trans-effect of the proximal histidine in haemoglobins. An electron spin resonance study of monomeric nitrosyl-57Fe-haemoglobins. Z Naturforsch C. 1976 Sep-Oct;31(9-10):524–533. doi: 10.1515/znc-1976-9-1009. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Brunori M. Stereochemistry of cooperative effects in fish an amphibian haemoglobins. Nature. 1982 Sep 30;299(5882):421–426. doi: 10.1038/299421a0. [DOI] [PubMed] [Google Scholar]
- Sick H., Gersonde K. Continuous gas-depletion technique for measuring O2-dissociation curves of high-affinity hemoglobins. Anal Biochem. 1985 Apr;146(1):277–280. doi: 10.1016/0003-2697(85)90427-0. [DOI] [PubMed] [Google Scholar]
- Sick H., Gersonde K. Die O2-Bindungseigenschaften einiger Larvalhämoglobine von Chironomus th. thummi. Eur J Biochem. 1969 Jan;7(2):273–279. doi: 10.1111/j.1432-1033.1969.tb19603.x. [DOI] [PubMed] [Google Scholar]
- Sick H., Gersonde K. Ligand-specific Bohr effect in haemoglobins. Eur J Biochem. 1974 Jun 1;45(1):313–320. doi: 10.1111/j.1432-1033.1974.tb03556.x. [DOI] [PubMed] [Google Scholar]
- Sick H., Gersonde K., Thompson J. C., Maurer W., Haar W., Rüterjans H. The Bohr proton-binding site in a monomeric haemoglobin. A nuclear-magnetic-resonance study. Eur J Biochem. 1972 Sep 18;29(2):217–223. doi: 10.1111/j.1432-1033.1972.tb01978.x. [DOI] [PubMed] [Google Scholar]
- Smit J. D., Sick H., Peterhans A., Gersonde K. Acid Bohr effect of a monomeric haemoglobin from Dicrocoelium dendriticum. Mechanism of the allosteric conformation transition. Eur J Biochem. 1986 Mar 3;155(2):231–237. doi: 10.1111/j.1432-1033.1986.tb09481.x. [DOI] [PubMed] [Google Scholar]
- Steigemann W., Weber E. Structure of erythrocruorin in different ligand states refined at 1.4 A resolution. J Mol Biol. 1979 Jan 25;127(3):309–338. doi: 10.1016/0022-2836(79)90332-2. [DOI] [PubMed] [Google Scholar]
- Trittelvitz E., Sick H., Gersonde K. Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Eur J Biochem. 1972 Dec 18;31(3):578–584. doi: 10.1111/j.1432-1033.1972.tb02568.x. [DOI] [PubMed] [Google Scholar]
- Trittelvitz E., Sick H., Gersonde K., Rüterjans H. Reduced Bohr effect in NO-ligated chironomus haemoglobin. Eur J Biochem. 1973 May;35(1):122–125. doi: 10.1111/j.1432-1033.1973.tb02817.x. [DOI] [PubMed] [Google Scholar]
- Tsubaki M., Yu N. T. Resonance Raman investigation of dioxygen bonding in oxycobaltmyoglobin and oxycobalthemoglobin: structural implication of splittings of the bound O--O stretching vibration. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3581–3585. doi: 10.1073/pnas.78.6.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber E., Steigemann W., Jones T. A., Huber R. The structure of oxy-erythrocruorin at 1.4 X resolution. J Mol Biol. 1978 Apr 5;120(2):327–336. doi: 10.1016/0022-2836(78)90071-2. [DOI] [PubMed] [Google Scholar]
- Wittenberg J. B. Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J Biol Chem. 1974 Jul 10;249(13):4057–4066. [PubMed] [Google Scholar]
- Yu N. T., Benko B., Kerr E. A., Gersonde K. Iron-carbon bond lengths in carbonmonoxy and cyanomet complexes of the monomeric hemoglobin III from Chironomus thummi thummi: a critical comparison between resonance Raman and x-ray diffraction studies. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5106–5110. doi: 10.1073/pnas.81.16.5106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu N. T., Mackin Thompson H., Zepke D., Gersonde K. Mechanism of the control of dioxygen binding in a dimeric cobalt-substituted insect hemoglobin. Resonance Raman evidence for cobalt-axial-ligand bond changes. Eur J Biochem. 1986 Jun 16;157(3):579–583. doi: 10.1111/j.1432-1033.1986.tb09705.x. [DOI] [PubMed] [Google Scholar]
- Yu N. T. Resonance Raman studies of ligand binding. Methods Enzymol. 1986;130:350–409. doi: 10.1016/0076-6879(86)30018-1. [DOI] [PubMed] [Google Scholar]
