Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Feb;51(2):339–343. doi: 10.1016/S0006-3495(87)83340-4

Theory of sample translation in fluorescence correlation spectroscopy.

A G Palmer 3rd, N L Thompson
PMCID: PMC1329895  PMID: 3828464

Abstract

New applications of the technique of fluorescence correlation spectroscopy (FCS) require lateral translation of the sample through a focused laser beam (Peterson, N.O., D.C. Johnson, and M.J. Schlesinger, 1986, Biophys. J., 49:817-820). Here, the effect of sample translation on the shape of the FCS autocorrelation function is examined in general. It is found that if the lateral diffusion coefficients of the fluorescent species obey certain conditions, then the FCS autocorrelation function is a simple product of one function that depends only on transport coefficients and another function that depends only on the rate constants of chemical reactions that occur in the sample. This simple form should allow manageable data analyses in new FCS experiments that involve sample translation.

Full text

PDF
339

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borejdo J. Motion of myosin fragments during actin-activated ATPase: fluorescence correlation spectroscopy study. Biopolymers. 1979 Nov;18(11):2807–2820. doi: 10.1002/bip.1979.360181111. [DOI] [PubMed] [Google Scholar]
  2. Borejdo J., Putnam S., Morales M. F. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6346–6350. doi: 10.1073/pnas.76.12.6346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briggs J., Elings V. B., Nicoli D. F. Homogeneous fluorescent immunoassay. Science. 1981 Jun 12;212(4500):1266–1267. doi: 10.1126/science.7015511. [DOI] [PubMed] [Google Scholar]
  4. Burghardt T. P., Ando T., Borejdo J. Evidence for cross-bridge order in contraction of glycerinated skeletal muscle. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7515–7519. doi: 10.1073/pnas.80.24.7515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elson E. L. Membrane dynamics studied by fluorescence correlation spectroscopy and photobleaching recovery. Soc Gen Physiol Ser. 1986;40:367–383. [PubMed] [Google Scholar]
  6. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements. Biopolymers. 1983 Aug;22(8):1919–1948. doi: 10.1002/bip.360220808. [DOI] [PubMed] [Google Scholar]
  7. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high DNA concentrations. Biopolymers. 1983 Aug;22(8):1949–1966. doi: 10.1002/bip.360220809. [DOI] [PubMed] [Google Scholar]
  8. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Magde D., Elson E. L., Webb W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974 Jan;13(1):29–61. doi: 10.1002/bip.1974.360130103. [DOI] [PubMed] [Google Scholar]
  10. Nicoli D. F., Briggs J., Elings V. B. Fluorescence immunoassay based on long time correlations of number fluctuations. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4904–4908. doi: 10.1073/pnas.77.8.4904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Petersen N. O., Johnson D. C., Schlesinger M. J. Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J. 1986 Apr;49(4):817–820. doi: 10.1016/S0006-3495(86)83710-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Petersen N. O. Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J. 1986 Apr;49(4):809–815. doi: 10.1016/S0006-3495(86)83709-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shoup D., Lipari G., Szabo A. Diffusion-controlled bimolecular reaction rates. The effect of rotational diffusion and orientation constraints. Biophys J. 1981 Dec;36(3):697–714. doi: 10.1016/S0006-3495(81)84759-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sorscher S. M., Bartholomew J. C., Klein M. P. The use of fluorescence correlations spectroscopy to probe chromatin in the cell nucleus. Biochim Biophys Acta. 1980 Nov 14;610(1):28–46. doi: 10.1016/0005-2787(80)90053-2. [DOI] [PubMed] [Google Scholar]
  15. Thompson N. L., Axelrod D. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J. 1983 Jul;43(1):103–114. doi: 10.1016/S0006-3495(83)84328-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thompson N. L., Burghardt T. P., Axelrod D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J. 1981 Mar;33(3):435–454. doi: 10.1016/S0006-3495(81)84905-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson N. L., Burghardt T. P. The influence of diffusion on the rate of a reversible quasi-unimolecular reaction in one, two or three dimensions. Biophys Chem. 1985 Mar;21(3-4):173–183. doi: 10.1016/0301-4622(85)80004-1. [DOI] [PubMed] [Google Scholar]
  18. Thompson N. L. Surface binding rates of nonfluorescent molecules may be obtained by total internal reflection with fluorescence correlation spectroscopy. Biophys J. 1982 Jun;38(3):327–329. doi: 10.1016/S0006-3495(82)84567-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weissman M., Schindler H., Feher G. Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2776–2780. doi: 10.1073/pnas.73.8.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES