Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Mar;51(3):439–447. doi: 10.1016/S0006-3495(87)83365-9

Optical ellipsometry on the diffraction order of skinned fibers. pH-induced rigor effects.

Y Yeh, R J Baskin, K Burton, J S Chen
PMCID: PMC1329909  PMID: 3494477

Abstract

The polarization properties of light diffracted from single-skinned fibers of skeletal muscles have been examined under conditions in which the bathing solution pH and the ionic strength are changed. For fibers in the relaxed state, we observe large decreases in both the total depolarization signal, r, and the total diffraction birefringence signal, delta nT, upon pH change from 7.0 to 8.0 at normal ionic strength. However, if the ionic strength is raised, then the r-value change as the pH changes from pH 7.0 to pH 8.0 is much smaller. If the rigor state is achieved at pH 8.0, and 0 mM ATP under either of the ionic strength conditions, the fiber can still be stretched. Rigor stiffness for this state is only approximately 20% that of the value of the stiffness at pH 7.0 rigor. Electron micrographs obtained under this pH 8.0 rigor state show that the overlap region can be decreased upon stretching the fiber, signifying a different kind of weaker-binding rigor state. Optically, the weaker-binding rigor state has a lower depolarization signal and larger form birefringence than the strong-binding rigor state. To convert from one type of rigor state (pH 7.0) to the other rigor state (pH 8.0), or vice versa, the fiber must first be relaxed. Apparently, either of the rigor states can block the full impact of the pH effect.

Full text

PDF
439

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate D., Reisler E. Crossbridge release and alpha-helix-coil transition in myosin and rod minifilaments. J Mol Biol. 1983 Sep 15;169(2):455–468. doi: 10.1016/s0022-2836(83)80061-8. [DOI] [PubMed] [Google Scholar]
  2. Baskin R. J., Yeh Y., Burton K., Chen J. S., Jones M. Optical depolarization changes in single, skinned muscle fibers. Evidence for cross-bridge involvement. Biophys J. 1986 Jul;50(1):63–74. doi: 10.1016/S0006-3495(86)83439-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B., Schoenberg M., Chalovich J. M., Greene L. E., Eisenberg E. Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7288–7291. doi: 10.1073/pnas.79.23.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B., Yu L. C., Podolsky R. J. X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths. Biophys J. 1984 Sep;46(3):299–306. doi: 10.1016/S0006-3495(84)84026-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cassim J. Y., Tobias P. S., Taylor E. W. Birefringence of muscle proteins and the problem of structural birefringence. Biochim Biophys Acta. 1968 Dec 3;168(3):463–471. doi: 10.1016/0005-2795(68)90180-3. [DOI] [PubMed] [Google Scholar]
  6. Chiao Y. C., Harrington W. F. Cross-bridge movement in glycerinated rabbit psoas muscle fibers. Biochemistry. 1979 Mar 20;18(6):959–963. doi: 10.1021/bi00573a004. [DOI] [PubMed] [Google Scholar]
  7. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  8. Fink R. H., Stephenson D. G., Williams D. A. Potassium and ionic strength effects on the isometric force of skinned twitch muscle fibres of the rat and toad. J Physiol. 1986 Jan;370:317–337. doi: 10.1113/jphysiol.1986.sp015937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harrington W. F. A mechanochemical mechanism for muscle contraction. Proc Natl Acad Sci U S A. 1971 Mar;68(3):685–689. doi: 10.1073/pnas.68.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higuchi H., Umazume Y. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J. 1986 Sep;50(3):385–389. doi: 10.1016/S0006-3495(86)83474-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huxley H. E., Kress M. Crossbridge behaviour during muscle contraction. J Muscle Res Cell Motil. 1985 Apr;6(2):153–161. doi: 10.1007/BF00713057. [DOI] [PubMed] [Google Scholar]
  12. Huxley H. E., Simmons R. M., Faruqi A. R., Kress M., Bordas J., Koch M. H. Millisecond time-resolved changes in x-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2297–2301. doi: 10.1073/pnas.78.4.2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matsubara I., Goldman Y. E., Simmons R. M. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J Mol Biol. 1984 Feb 15;173(1):15–33. doi: 10.1016/0022-2836(84)90401-7. [DOI] [PubMed] [Google Scholar]
  14. Reedy M. K., Reedy M. C. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J Mol Biol. 1985 Sep 5;185(1):145–176. doi: 10.1016/0022-2836(85)90188-3. [DOI] [PubMed] [Google Scholar]
  15. Reisler E., Liu J. Conformational changes in the myosin subfragment-2. Effect of pH on synthetic rod filaments. J Mol Biol. 1982 Jun 5;157(4):659–669. doi: 10.1016/0022-2836(82)90504-6. [DOI] [PubMed] [Google Scholar]
  16. Rome E. X-ray diffraction studies of the filament lattice of striated muscle in various bathing media. J Mol Biol. 1968 Oct 28;37(2):331–344. doi: 10.1016/0022-2836(68)90272-6. [DOI] [PubMed] [Google Scholar]
  17. Sutoh K., Harrington W. F. Cross-linking of myosin thick filaments under activating and rigor conditions. A study of the radial disposition of cross-bridges. Biochemistry. 1977 May 31;16(11):2441–2449. doi: 10.1021/bi00630a020. [DOI] [PubMed] [Google Scholar]
  18. Taylor K. A., Reedy M. C., Córdova L., Reedy M. K. Three-dimensional reconstruction of rigor insect flight muscle from tilted thin sections. 1984 Jul 26-Aug 1Nature. 310(5975):285–291. doi: 10.1038/310285a0. [DOI] [PubMed] [Google Scholar]
  19. Toylor D. L. Quantitative studies on the polarization optical properties of striated muscle. I. Birefringence changes of rabbit psoas muscle in the transition from rigor to relaxed state. J Cell Biol. 1976 Mar;68(3):497–511. doi: 10.1083/jcb.68.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsong T. Y., Karr T., Harrington W. F. Rapid helix--coil transitions in the S-2 region of myosin. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1109–1113. doi: 10.1073/pnas.76.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ueno H., Harrington W. F. An enzyme-probe method to detect structural changes in the myosin rod. J Mol Biol. 1984 Feb 15;173(1):35–61. doi: 10.1016/0022-2836(84)90402-9. [DOI] [PubMed] [Google Scholar]
  22. Ueno H., Harrington W. F. Conformational transition in the myosin hinge upon activation of muscle. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6101–6105. doi: 10.1073/pnas.78.10.6101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ueno H., Harrington W. F. Cross-bridge movement and the conformational state of the myosin hinge in skeletal muscle. J Mol Biol. 1981 Jul 15;149(4):619–640. doi: 10.1016/0022-2836(81)90350-8. [DOI] [PubMed] [Google Scholar]
  24. Yanagida T. Angles of nucleotides bound to cross-bridges in glycerinated muscle fiber at various concentrations of epsilon-ATP, epsilon-ADP and epsilon-AMPPNP detected by polarized fluorescence. J Mol Biol. 1981 Mar 15;146(4):539–560. doi: 10.1016/0022-2836(81)90046-2. [DOI] [PubMed] [Google Scholar]
  25. Yeh Y., Baskin R. J., Brown R. A., Burton K. Depolarization spectrum of diffracted light from muscle fiber. The intrinsic anisotropy component. Biophys J. 1985 May;47(5):739–742. doi: 10.1016/S0006-3495(85)83973-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yeh Y., Corcoran M. E., Baskin R. J., Lieber R. L. Optical depolarization changes on the diffraction pattern in the transition of skinned muscle fibers from relaxed to rigor state. Biophys J. 1983 Dec;44(3):343–351. doi: 10.1016/S0006-3495(83)84308-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yeh Y., Pinsky B. G. Optical polarization properties of the diffraction spectra from single fibers of skeletal muscle. Biophys J. 1983 Apr;42(1):83–90. doi: 10.1016/S0006-3495(83)84371-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES