Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Jul;52(1):87–94. doi: 10.1016/S0006-3495(87)83191-0

Viscoelastic relaxation of bilayer lipid membranes. Frequency-dependent tension and membrane viscosity.

G E Crawford, J C Earnshaw
PMCID: PMC1329986  PMID: 3607223

Abstract

Photon correlation spectroscopy has been used to study capillary waves on black lipid membranes of glycerol monooleate at temperatures above the lipid transition. For the first time the tension and viscosity of solvent-free bilayers have been observed to display a frequency dependence. The variations of both parameters can be accounted for by a Maxwell viscoelastic fluid model having a relaxation time of 37 microseconds. The equilibrium (omega = 0) tension is compatible with literature values. The present results do not suffice to precisely define the specific molecular processes involved, but relaxation times similar to the present are associated with certain phenomena in phospholipid vesicles. Bilayers containing hydrocarbon solvent do not show such relaxation, presumably due to their weaker intermolecular interactions.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chien S., Sung K. L., Skalak R., Usami S., Tözeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J. 1978 Nov;24(2):463–487. doi: 10.1016/S0006-3495(78)85395-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crawford G. E., Earnshaw J. C. Phase transitions in monoglyceride bilayers. A light scattering study. Biophys J. 1986 Apr;49(4):869–889. doi: 10.1016/S0006-3495(86)83716-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crilly J. F., Earnshaw J. C. Photon correlation spectroscopy of bilayer lipid membranes. Biophys J. 1983 Feb;41(2):197–210. doi: 10.1016/S0006-3495(83)84420-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elliott J. R., Needham D., Dilger J. P., Haydon D. A. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim Biophys Acta. 1983 Oct 26;735(1):95–103. doi: 10.1016/0005-2736(83)90264-x. [DOI] [PubMed] [Google Scholar]
  5. Engelhardt H., Gaub H., Sackmann E. Viscoelastic properties of erythrocyte membranes in high-frequency electric fields. 1984 Jan 26-Feb 1Nature. 307(5949):378–380. doi: 10.1038/307378a0. [DOI] [PubMed] [Google Scholar]
  6. Hladky S. B., Gruen D. W. Thickness fluctuations in black lipid membranes. Biophys J. 1982 Jun;38(3):251–258. doi: 10.1016/S0006-3495(82)84556-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leermakers F. A., Scheutjens J. M., Lyklema J. On the statistical thermodynamics of membrane formation. Biophys Chem. 1983 Nov;18(4):353–360. doi: 10.1016/0301-4622(83)80048-9. [DOI] [PubMed] [Google Scholar]
  8. Lipowsky R. Critical effects at complete wetting. Phys Rev B Condens Matter. 1985 Aug 1;32(3):1731–1750. doi: 10.1103/physrevb.32.1731. [DOI] [PubMed] [Google Scholar]
  9. Lookman T., Pink D. A., Grundke E. W., Zuckermann M. J., deVerteuil F. Phase separation in lipid bilayers containing integral proteins. Computer simulation studies. Biochemistry. 1982 Oct 26;21(22):5593–5601. doi: 10.1021/bi00265a032. [DOI] [PubMed] [Google Scholar]
  10. Waugh R. E. Surface viscosity measurements from large bilayer vesicle tether formation. II. Experiments. Biophys J. 1982 Apr;38(1):29–37. doi: 10.1016/S0006-3495(82)84527-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES