Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Jun;51(6):905–913. doi: 10.1016/S0006-3495(87)83418-5

The effect of myoglobin-facilitated oxygen transport on the basal metabolism of papillary muscle.

D S Loiselle
PMCID: PMC1330024  PMID: 3607211

Abstract

A mathematical model of oxygen diffusion into cylindrical papillary muscles is presented. The model partitions total oxygen flux into its simple and myoglobin-facilitated components. The model includes variable sigmoidal, exponential, or hyperbolic functions relating oxygen partial pressure to both fractional myoglobin saturation and rate of oxygen consumption. The behavior of the model was explored for a variety of saturation- and consumption-concentration relations. Facilitation of oxygen transport by myoglobin was considerable as indexed both by the elevation of oxygen partial pressure on the longitudinal axis of the muscle and by the fraction of total oxygen flux at the muscle center contributed by oxymyoglobin. Despite its facilitation of oxygen flux at the muscle center, myoglobin made only a negligible contribution to the total oxygen consumption averaged over the muscle cross-section. Hence the presence of myoglobin fails to explain either the experimentally determined basal metabolism-muscle radius relation or the stretch effect observed in isolated papillary muscle.

Full text

PDF
905

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cole R. P., Wittenberg B. A., Caldwell P. R. Myoglobin function in the isolated fluorocarbon-perfused dog heart. Am J Physiol. 1978 May;234(5):H567–H572. doi: 10.1152/ajpheart.1978.234.5.H567. [DOI] [PubMed] [Google Scholar]
  2. Fletcher J. E. On facilitated oxygen diffusion in muscle tissues. Biophys J. 1980 Mar;29(3):437–458. doi: 10.1016/S0006-3495(80)85145-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gonzalez-Fernandez J. M., Atta S. E. Facilitated transport of oxygen in the presence of membranes in the diffusion path. Biophys J. 1982 May;38(2):133–141. doi: 10.1016/S0006-3495(82)84540-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jöbsis F. F. Oxidative metabolism at low PO 2 . Fed Proc. 1972 Sep-Oct;31(5):1404–1413. [PubMed] [Google Scholar]
  5. Kreuzer F. Facilitated diffusion of oxygen and its possible significance; a review. Respir Physiol. 1970 Apr;9(1):1–30. doi: 10.1016/0034-5687(70)90002-2. [DOI] [PubMed] [Google Scholar]
  6. Loiselle D. S., Gibbs C. L. Factors affecting the metabolism of resting rabbit papillary muscle. Pflugers Arch. 1983 Mar;396(4):285–291. doi: 10.1007/BF01063932. [DOI] [PubMed] [Google Scholar]
  7. Loiselle D. S., Gibbs C. L. Species differences in cardiac energetics. Am J Physiol. 1979 Jul;237(1):H90–H98. doi: 10.1152/ajpheart.1979.237.1.H90. [DOI] [PubMed] [Google Scholar]
  8. Loiselle D. S. Stretch-induced increase in resting metabolism of isolated papillary muscle. Biophys J. 1982 May;38(2):185–194. doi: 10.1016/S0006-3495(82)84545-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Loiselle D. S. The rate of resting heat production of rat papillary muscle. Pflugers Arch. 1985 Sep;405(2):155–162. doi: 10.1007/BF00584537. [DOI] [PubMed] [Google Scholar]
  10. Loiselle D. A theoretical analysis of the rate of resting metabolism of isolated papillary muscle. Adv Myocardiol. 1985;6:205–216. [PubMed] [Google Scholar]
  11. Mainwood G. W., Rakusan K. A model for intracellular energy transport. Can J Physiol Pharmacol. 1982 Jan;60(1):98–102. doi: 10.1139/y82-016. [DOI] [PubMed] [Google Scholar]
  12. Murray J. D. On the role of myoglobin in muscle respiration. J Theor Biol. 1974 Sep;47(1):115–126. doi: 10.1016/0022-5193(74)90102-7. [DOI] [PubMed] [Google Scholar]
  13. Rubinow S. I., Dembo M. The facilitated diffusion of oxygen by hemoglobin and myoglobin. Biophys J. 1977 Apr;18(1):29–42. doi: 10.1016/S0006-3495(77)85594-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stroeve P. Myoglobin-facilitated oxygen transport in heterogeneous red muscle tissue. Ann Biomed Eng. 1982;10(2):49–70. doi: 10.1007/BF02366998. [DOI] [PubMed] [Google Scholar]
  15. Taylor B. A., Murray J. D. Effect of the rate of oxygen consumption on muscle respiration. J Math Biol. 1977 Feb 28;4(1):1–20. doi: 10.1007/BF00276348. [DOI] [PubMed] [Google Scholar]
  16. Taylor D. J., Matthews P. M., Radda G. K. Myoglobin-dependent oxidative metabolism in the hypoxic rat heart. Respir Physiol. 1986 Mar;63(3):275–283. doi: 10.1016/0034-5687(86)90095-2. [DOI] [PubMed] [Google Scholar]
  17. Wilson D. F., Erecińska M., Drown C., Silver I. A. Effect of oxygen tension on cellular energetics. Am J Physiol. 1977 Nov;233(5):C135–C140. doi: 10.1152/ajpcell.1977.233.5.C135. [DOI] [PubMed] [Google Scholar]
  18. Wittenberg B. A., Wittenberg J. B., Caldwell P. R. Role of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem. 1975 Dec 10;250(23):9038–9043. [PubMed] [Google Scholar]
  19. Wittenberg J. B. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 1970 Oct;50(4):559–636. doi: 10.1152/physrev.1970.50.4.559. [DOI] [PubMed] [Google Scholar]
  20. de Koning J., Hoofd L. J., Kreuzer F. Oxygen transport and the function of myoglobin. Theoretical model and experiments in chicken gizzard smooth muscle. Pflugers Arch. 1981 Mar;389(3):211–217. doi: 10.1007/BF00584781. [DOI] [PubMed] [Google Scholar]
  21. van Ouwerkerk H. J. Facilitated diffusion in a tissue cylinder with an anoxic region. Pflugers Arch. 1977;372(3):221–230. doi: 10.1007/BF01063856. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES