Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Oct;52(4):551–561. doi: 10.1016/S0006-3495(87)83244-7

Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity.

P A Valberg 1, H A Feldman 1
PMCID: PMC1330045  PMID: 3676436

Abstract

Submicrometer magnetic particles, ingested by cells and monitored via the magnetic fields they generate, provide an alternative to optical microscopy for probing movement and viscosity of living cytoplasm, and can be used for cells both in vitro and in vivo. We present methods for preparing lung macrophages tagged with magnetic particles for magnetometric study. Interpretation of the data involves fitting experimental remanent-field decay curves to nonlinear mechanistic models of intracellular particle motion. The model parameters are sensitive to mobility and apparent cytoplasmic viscosity experienced by particle-containing organelles. We present results of parameter estimation for intracellular particle behavior both within control cells and after (a) variable magnetization duration, (b) incubation with cytochalasin D, and (c) particle twisting by external fields. Magnetometric analysis showed cytoplasmic elasticity, dose-dependent motion inhibition by cytochalasin D, and a shear-thinning apparent viscosity.

Full text

PDF
551

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Pollard T. D. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature. 1986 Aug 21;322(6081):754–756. doi: 10.1038/322754a0. [DOI] [PubMed] [Google Scholar]
  2. Albertini D. F., Herman B., Sherline P. In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling. Eur J Cell Biol. 1984 Jan;33(1):134–143. [PubMed] [Google Scholar]
  3. Beckerle M. C. Microinjected fluorescent polystyrene beads exhibit saltatory motion in tissue culture cells. J Cell Biol. 1984 Jun;98(6):2126–2132. doi: 10.1083/jcb.98.6.2126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brain J. D., Bloom S. B., Valberg P. A., Gehr P. Correlation between the behavior of magnetic iron oxide particles in the lungs of rabbits and phagocytosis. Exp Lung Res. 1984;6(2):115–131. doi: 10.3109/01902148409087900. [DOI] [PubMed] [Google Scholar]
  5. Brain J. D., Frank N. R. Recovery of free cells from rat lungs by repeated washings. J Appl Physiol. 1968 Jul;25(1):63–69. doi: 10.1152/jappl.1968.25.1.63. [DOI] [PubMed] [Google Scholar]
  6. Brown S. S., Spudich J. A. Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol. 1981 Mar;88(3):487–491. doi: 10.1083/jcb.88.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buxbaum R. E., Dennerll T., Weiss S., Heidemann S. R. F-actin and microtubule suspensions as indeterminate fluids. Science. 1987 Mar 20;235(4795):1511–1514. doi: 10.1126/science.2881354. [DOI] [PubMed] [Google Scholar]
  8. Cassimeris L. U., Wadsworth P., Salmon E. D. Dynamics of microtubule depolymerization in monocytes. J Cell Biol. 1986 Jun;102(6):2023–2032. doi: 10.1083/jcb.102.6.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chandler D. B., Fuller W. C., Jackson R. M., Fulmer J. D. Fractionation of rat alveolar macrophages by isopycnic centrifugation: morphological, cytochemical, biochemical, and functional properties. J Leukoc Biol. 1986 Apr;39(4):371–383. doi: 10.1002/jlb.39.4.371. [DOI] [PubMed] [Google Scholar]
  10. Cohen D. Ferromagnetic contamination in the lungs and other organs of the human body. Science. 1973 May 18;180(4087):745–748. doi: 10.1126/science.180.4087.745. [DOI] [PubMed] [Google Scholar]
  11. Cohen D., Nemoto I. Ferrimagnetic particles in the lung. Part I: The magnetizing process. IEEE Trans Biomed Eng. 1984 Mar;31(3):261–273. doi: 10.1109/tbme.1984.325265. [DOI] [PubMed] [Google Scholar]
  12. Cohen D., Nemoto I., Kaufman L., Arai S. Ferrimagnetic particles in the lung. Part II: The relaxation process. IEEE Trans Biomed Eng. 1984 Mar;31(3):274–285. doi: 10.1109/TBME.1984.325266. [DOI] [PubMed] [Google Scholar]
  13. Cranston H. A., Boylan C. W., Carroll G. L., Sutera S. P., Williamson J. R., Gluzman I. Y., Krogstad D. J. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science. 1984 Jan 27;223(4634):400–403. doi: 10.1126/science.6362007. [DOI] [PubMed] [Google Scholar]
  14. Dembo M., Harlow F. Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys J. 1986 Jul;50(1):109–121. doi: 10.1016/S0006-3495(86)83444-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Euteneuer U., Schliwa M. Evidence for an involvement of actin in the positioning and motility of centrosomes. J Cell Biol. 1985 Jul;101(1):96–103. doi: 10.1083/jcb.101.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984 Nov;64(5):1028–1035. [PubMed] [Google Scholar]
  17. GIBB F. R., MORROW P. E. Alveolar clearance in dogs after inhalation of an iron 59 oxide aerosol. J Appl Physiol. 1962 May;17:429–432. doi: 10.1152/jappl.1962.17.3.429. [DOI] [PubMed] [Google Scholar]
  18. Gehr P., Brain J. D., Nemoto I., Bloom S. B. Behavior of magnetic particles in hamster lungs: estimates of clearance and cytoplasmic motility. J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1196–1202. doi: 10.1152/jappl.1983.55.4.1196. [DOI] [PubMed] [Google Scholar]
  19. Grant M. M., Sorokin S. P., Brain J. D. Lysosomal enzyme activities in pulmonary macrophages from rabbits breathing iron oxide. Am Rev Respir Dis. 1979 Nov;120(5):1003–1012. doi: 10.1164/arrd.1979.120.5.1003. [DOI] [PubMed] [Google Scholar]
  20. Hayden J. H., Allen R. D., Goldman R. D. Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil. 1983;3(1):1–19. doi: 10.1002/cm.970030102. [DOI] [PubMed] [Google Scholar]
  21. Hiramoto Y. Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg. Exp Cell Res. 1969 Aug;56(2):201–208. doi: 10.1016/0014-4827(69)90003-2. [DOI] [PubMed] [Google Scholar]
  22. Jennrich R. I., Ralston M. L. Fitting nonlinear models to data. Annu Rev Biophys Bioeng. 1979;8:195–238. doi: 10.1146/annurev.bb.08.060179.001211. [DOI] [PubMed] [Google Scholar]
  23. Kavet R. I., Brain J. D., Levens D. J. Characteristics of pulmonary macrophages lavaged from hamsters exposed to iron oxide aerosols. Lab Invest. 1978 Mar;38(3):312–319. [PubMed] [Google Scholar]
  24. Kavet R. I., Brain J. D. Methods to quantify endocytosis: a review. J Reticuloendothel Soc. 1980 Feb;27(2):201–221. [PubMed] [Google Scholar]
  25. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacLean-Fletcher S. D., Pollard T. D. Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J Cell Biol. 1980 May;85(2):414–428. doi: 10.1083/jcb.85.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  28. Maruyama K., Kaibara M., Fukada E. Rheology of F-actin. I. Network of F-actin in solution. Biochim Biophys Acta. 1974 Nov 5;371(1):20–29. doi: 10.1016/0005-2795(74)90150-0. [DOI] [PubMed] [Google Scholar]
  29. Mastro A. M., Babich M. A., Taylor W. D., Keith A. D. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3414–3418. doi: 10.1073/pnas.81.11.3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nemoto I. A model of magnetization and relaxation of ferrimagnetic particles in the lung. IEEE Trans Biomed Eng. 1982 Dec;29(12):745–752. doi: 10.1109/TBME.1982.324869. [DOI] [PubMed] [Google Scholar]
  31. Parod R. J., Brain J. D. Immune opsonin-independent phagocytosis by pulmonary macrophages. J Immunol. 1986 Mar 15;136(6):2041–2047. [PubMed] [Google Scholar]
  32. Reppun T. S., Lin H. S., Kuhn C., 3rd Isokinetic separation and characterization of mouse pulmonary alveolar colony-forming cells. J Reticuloendothel Soc. 1979 Apr;25(4):379–387. [PubMed] [Google Scholar]
  33. Rubinson K. A., Baker P. F. The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium. Proc R Soc Lond B Biol Sci. 1979 Aug 31;205(1160):323–345. doi: 10.1098/rspb.1979.0068. [DOI] [PubMed] [Google Scholar]
  34. Salmon E. D., Saxton W. M., Leslie R. J., Karow M. L., McIntosh J. R. Diffusion coefficient of fluorescein-labeled tubulin in the cytoplasm of embryonic cells of a sea urchin: video image analysis of fluorescence redistribution after photobleaching. J Cell Biol. 1984 Dec;99(6):2157–2164. doi: 10.1083/jcb.99.6.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sato M., Wong T. Z., Allen R. D. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium. J Cell Biol. 1983 Oct;97(4):1089–1097. doi: 10.1083/jcb.97.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sato M., Wong T. Z., Brown D. T., Allen R. D. Rheological properties of living cytoplasm: a preliminary investigation of squid axoplasm (Loligo pealei). Cell Motil. 1984;4(1):7–23. doi: 10.1002/cm.970040103. [DOI] [PubMed] [Google Scholar]
  37. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  38. Sorokin S. P., Brain J. D. Pathways of clearance in mouse lungs exposed to iron oxide aerosols. Anat Rec. 1975 Mar;181(3):581–625. doi: 10.1002/ar.1091810304. [DOI] [PubMed] [Google Scholar]
  39. Sung K. L., Schmid-Schönbein G. W., Skalak R., Schuessler G. B., Usami S., Chien S. Influence of physicochemical factors on rheology of human neutrophils. Biophys J. 1982 Jul;39(1):101–106. doi: 10.1016/S0006-3495(82)84495-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. The cytoplasmic matrix and the integration of cellular function. Proceedings of a conference. Fogarty International Center, National Institutes of Health, 17-20 October 1893. J Cell Biol. 1984 Jul;99(1 Pt 2):1s–248s. [PubMed] [Google Scholar]
  41. Valberg P. A., Albertini D. F. Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol. 1985 Jul;101(1):130–140. doi: 10.1083/jcb.101.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Valberg P. A., Brain J. D. Generation and use of three types of iron-oxide aerosol. Am Rev Respir Dis. 1979 Nov;120(5):1013–1024. doi: 10.1164/arrd.1979.120.5.1013. [DOI] [PubMed] [Google Scholar]
  43. Valberg P. A., Butler J. P. Magnetic particle motions within living cells. Physical theory and techniques. Biophys J. 1987 Oct;52(4):537–550. doi: 10.1016/S0006-3495(87)83243-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Valberg P. A. Magnetometry of ingested particles in pulmonary macrophages. Science. 1984 May 4;224(4648):513–516. doi: 10.1126/science.6710153. [DOI] [PubMed] [Google Scholar]
  45. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell. 1985 Feb;40(2):449–454. doi: 10.1016/0092-8674(85)90159-x. [DOI] [PubMed] [Google Scholar]
  46. Wang Y. L., Lanni F., McNeil P. L., Ware B. R., Taylor D. L. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4660–4664. doi: 10.1073/pnas.79.15.4660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wojcieszyn J. W., Schlegel R. A., Wu E. S., Jacobson K. A. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4407–4410. doi: 10.1073/pnas.78.7.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. YAGI K. The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comp Biochem Physiol. 1961 Aug;3:73–91. doi: 10.1016/0010-406x(61)90134-7. [DOI] [PubMed] [Google Scholar]
  49. Zaner K. S., Stossel T. P. Some perspectives on the viscosity of actin filaments. J Cell Biol. 1982 Jun;93(3):987–991. doi: 10.1083/jcb.93.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES