Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Aug;52(2):165–175. doi: 10.1016/S0006-3495(87)83204-6

Phase resetting in a model of cardiac Purkinje fiber.

M R Guevara 1, A Shrier 1
PMCID: PMC1330068  PMID: 3663827

Abstract

The phase-resetting response of a model of spontaneously active cardiac Purkinje fiber is investigated. The effect on the interbeat interval of injecting a 20-ms duration depolarizing current pulse is studied as a function of the phase in the cycle at which the pulse is delivered. At low current amplitudes, a triphasic response is recorded as the pulse is advanced through the cycle. At intermediate current amplitudes, the response becomes quinquephasic, due to the presence of supernormal excitability. At high current amplitudes, a triphasic response is seen once more. At low stimulus amplitudes, type 1 phase resetting occurs; at medium amplitudes, a type could not be ascribed to the phase resetting because of the presence of effectively all-or-none depolarization; at high amplitudes, type 0 phase resetting occurs. The modeling results closely correspond with published experimental data; in particular type 1 and type 0 phase resetting are seen. Implications for the induction of ventricular arrhythmias are considered.

Full text

PDF
165

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agha A. S., Castellanos A., Jr, Wells D., Ross M. D., Befeler B., Myerburg R. J. Type I, type II, and type 3 gaps in bundle-branch conduction. Circulation. 1973 Feb;47(2):325–330. doi: 10.1161/01.cir.47.2.325. [DOI] [PubMed] [Google Scholar]
  2. Antzelevitch C., Jalife J., Moe G. K. Electrotonic metabolism of pacemaker activity. Further biological and mathematical observations on the behavior of modulated parasystole. Circulation. 1982 Dec;66(6):1225–1232. doi: 10.1161/01.cir.66.6.1225. [DOI] [PubMed] [Google Scholar]
  3. Antzelevitch C., Moe G. K. Electrotonic inhibition and summation of impulse conduction in mammalian Purkinje fibers. Am J Physiol. 1983 Jul;245(1):H42–H53. doi: 10.1152/ajpheart.1983.245.1.H42. [DOI] [PubMed] [Google Scholar]
  4. Castellanos A., Luceri R. M., Moleiro F., Kayden D. S., Trohman R. G., Zaman L., Myerburg R. J. Annihilation, entrainment and modulation of ventricular parasystolic rhythms. Am J Cardiol. 1984 Aug 1;54(3):317–322. doi: 10.1016/0002-9149(84)90190-5. [DOI] [PubMed] [Google Scholar]
  5. Chay T. R., Lee Y. S. Impulse responses of automaticity in the Purkinje fiber. Biophys J. 1984 Apr;45(4):841–849. doi: 10.1016/S0006-3495(84)84228-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clay J. R., Guevara M. R., Shrier A. Phase resetting of the rhythmic activity of embryonic heart cell aggregates. Experiment and theory. Biophys J. 1984 Apr;45(4):699–714. doi: 10.1016/S0006-3495(84)84212-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clay J. R. Monte Carlo simulation of membrane noise: an analysis of fluctuations in graded excitation of nerve membrane. J Theor Biol. 1977 Feb 21;64(4):671–680. doi: 10.1016/0022-5193(77)90266-1. [DOI] [PubMed] [Google Scholar]
  8. Cranefield P. F., Aronson R. S. Initiation of sustained rhythmic activity by single propagated action potentials in canine cardiac Purkinje fibers exposed to sodium-free solution or to ouabain. Circ Res. 1974 Apr;34(4):477–481. doi: 10.1161/01.res.34.4.477. [DOI] [PubMed] [Google Scholar]
  9. DiFrancesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353–398. doi: 10.1098/rstb.1985.0001. [DOI] [PubMed] [Google Scholar]
  10. Drouhard J. P., Roberge F. A. The simulation of repolarization events of the cardiac Purkinje fiber action potential. IEEE Trans Biomed Eng. 1982 Jul;29(7):481–493. doi: 10.1109/TBME.1982.324920. [DOI] [PubMed] [Google Scholar]
  11. FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J Gen Physiol. 1960 May;43:867–896. doi: 10.1085/jgp.43.5.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glass L., Winfree A. T. Discontinuities in phase-resetting experiments. Am J Physiol. 1984 Feb;246(2 Pt 2):R251–R258. doi: 10.1152/ajpregu.1984.246.2.R251. [DOI] [PubMed] [Google Scholar]
  13. Guevara M. R., Glass L., Shrier A. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science. 1981 Dec 18;214(4527):1350–1353. doi: 10.1126/science.7313693. [DOI] [PubMed] [Google Scholar]
  14. Guevara M. R., Shrier A., Glass L. Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. Am J Physiol. 1986 Dec;251(6 Pt 2):H1298–H1305. doi: 10.1152/ajpheart.1986.251.6.H1298. [DOI] [PubMed] [Google Scholar]
  15. Harumi K., Owens J., Burgess M. J., Abildskov J. A. Relationship of ventricular excitability characteristics to ventricular arrhythmias in dogs. Circ Res. 1974 Sep;35(3):464–471. doi: 10.1161/01.res.35.3.464. [DOI] [PubMed] [Google Scholar]
  16. Jalife J., Antzelevitch C. Pacemaker annihilation: diagnostic and therapeutic implications. Am Heart J. 1980 Jul;100(1):128–130. doi: 10.1016/0002-8703(80)90289-6. [DOI] [PubMed] [Google Scholar]
  17. Jalife J., Moe G. K. A biologic model of parasystole. Am J Cardiol. 1979 Apr;43(4):761–772. doi: 10.1016/0002-9149(79)90076-6. [DOI] [PubMed] [Google Scholar]
  18. Jalife J., Moe G. K. Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res. 1976 Dec;39(6):801–808. doi: 10.1161/01.res.39.6.801. [DOI] [PubMed] [Google Scholar]
  19. KAO C. Y., HOFFMAN B. F. Graded and decremental response in heart muscle fibers. Am J Physiol. 1958 Jul;194(1):187–196. doi: 10.1152/ajplegacy.1958.194.1.187. [DOI] [PubMed] [Google Scholar]
  20. Kass R. S., Tsien R. W. Control of action potential duration by calcium ions in cardiac Purkinje fibers. J Gen Physiol. 1976 May;67(5):599–617. doi: 10.1085/jgp.67.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kennelly B. M., Lane G. K. Effect of ventricular extrasystoles on idioventricular rhythm in patients with complete heart block. Cardiovasc Res. 1978 Dec;12(12):703–711. doi: 10.1093/cvr/12.12.703. [DOI] [PubMed] [Google Scholar]
  22. Klein H. O., Cranefield P. F., Hoffman B. F. Effect of extrasystoles on idioventricular rhythm. Circ Res. 1972 Jun;30(6):651–665. doi: 10.1161/01.res.30.6.651. [DOI] [PubMed] [Google Scholar]
  23. McAllister R. E., Noble D., Tsien R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975 Sep;251(1):1–59. doi: 10.1113/jphysiol.1975.sp011080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moe G. K., Jalife J., Mueller W. J., Moe B. A mathematical model of parasystole and its application to clinical arrhythmias. Circulation. 1977 Dec;56(6):968–979. doi: 10.1161/01.cir.56.6.968. [DOI] [PubMed] [Google Scholar]
  25. Reiner V. S., Antzelevitch C. Phase resetting and annihilation in a mathematical model of sinus node. Am J Physiol. 1985 Dec;249(6 Pt 2):H1143–H1153. doi: 10.1152/ajpheart.1985.249.6.H1143. [DOI] [PubMed] [Google Scholar]
  26. Rosenthal J. E., Ferrier G. R. Contribution of variable entrance and exit block in protected foci to arrhythmogenesis in isolated ventricular tissues. Circulation. 1983 Jan;67(1):1–8. doi: 10.1161/01.cir.67.1.1. [DOI] [PubMed] [Google Scholar]
  27. SMIRK F. H. R waves interrupting T waves. Br Heart J. 1949 Jan;11(1):23–36. doi: 10.1136/hrt.11.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shrier A., Clay J. R. Repolarization currents in embryonic chick atrial heart cell aggregates. Biophys J. 1986 Nov;50(5):861–874. doi: 10.1016/S0006-3495(86)83527-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spear J. F., Moore E. N. Supernormal excitability and conduction in the His-Purkinje system of the dog. Circ Res. 1974 Nov;35(5):782–792. doi: 10.1161/01.res.35.5.782. [DOI] [PubMed] [Google Scholar]
  30. Van Meerwijk W. P., deBruin G., Van Ginneken C. G., VanHartevelt J., Jongsma H. J., Kruyt E. W., Scott S. S., Ypey D. L. Phase resetting properties of cardiac pacemaker cells. J Gen Physiol. 1984 Apr;83(4):613–629. doi: 10.1085/jgp.83.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Victorri B., Vinet A., Roberge F. A., Drouhard J. P. Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Comput Biomed Res. 1985 Feb;18(1):10–23. doi: 10.1016/0010-4809(85)90003-5. [DOI] [PubMed] [Google Scholar]
  32. WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winfree A. T. Sudden cardia death: a problem in topology. Sci Am. 1983 May;248(5):144-9, 152-7, 160-1. doi: 10.1038/scientificamerican0583-144. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES