Abstract
Recently, several authors evaluated the affinity between lipid bilayers or erythrocyte membranes by analyzing the deformation of cells or vesicles they brought into close contact using micromanipulators. In the present report, we extend this approach in a study of the adhesive properties of rough nucleated cells. Rat peritoneal macrophages were made to bind human red cells modified with glutaraldehyde or glutaraldehyde and polylysine. Conjugates were examined with electron microscopy, and photomicrographs were digitized for quantification of cell surface roughness in and out of adhesion areas. Also, macrophages were subjected to micropipette aspiration to find a relationship between apparent surface tension and area increase. Assuming that this increase was a direct consequence of a smoothing of the cell surface on the submicrometer scale, the actual affinity between macrophages and erythrocytes was estimated. The obtained values ranged between 8.4 X 10(-5) and 18.2 X 10(-5) J/m2. It is concluded that cell surface roughness may be an important parameter of cell adhesion and perhaps deformation. This is made amenable to experimental study by the present approach.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell G. I., Dembo M., Bongrand P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J. 1984 Jun;45(6):1051–1064. doi: 10.1016/S0006-3495(84)84252-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benoliel A. M., Capo C., Bongrand P., Ryter A., Depieds R. Non-specific binding by macrophages: existence of different adhesive mechanisms and modulation by metabolic inhibitors. Immunology. 1980 Nov;41(3):547–560. [PMC free article] [PubMed] [Google Scholar]
- Buxbaum K., Evans E., Brooks D. E. Quantitation of surface affinities of red blood cells in dextran solutions and plasma. Biochemistry. 1982 Jun 22;21(13):3235–3239. doi: 10.1021/bi00256a032. [DOI] [PubMed] [Google Scholar]
- Capo C., Bongrand P., Benoliel A. M., Depieds R. Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages. Immunology. 1979 Mar;36(3):501–508. [PMC free article] [PubMed] [Google Scholar]
- Capo C., Garrouste F., Benoliel A. M., Bongrand P., Ryter A., Bell G. I. Concanavalin-A-mediated thymocyte agglutination: a model for a quantitative study of cell adhesion. J Cell Sci. 1982 Aug;56:21–48. doi: 10.1242/jcs.56.1.21. [DOI] [PubMed] [Google Scholar]
- Elias H., Hennig A., Schwartz D. E. Stereology: applications to biomedicalresearch. Physiol Rev. 1971 Jan;51(1):158–200. doi: 10.1152/physrev.1971.51.1.158. [DOI] [PubMed] [Google Scholar]
- Erickson C. A., Trinkaus J. P. Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp Cell Res. 1976 May;99(2):375–384. doi: 10.1016/0014-4827(76)90595-4. [DOI] [PubMed] [Google Scholar]
- Evans E. A. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys J. 1980 May;30(2):265–284. doi: 10.1016/S0006-3495(80)85093-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood. 1984 Nov;64(5):1028–1035. [PubMed] [Google Scholar]
- Evans E., Leung A. Adhesivity and rigidity of erythrocyte membrane in relation to wheat germ agglutinin binding. J Cell Biol. 1984 Apr;98(4):1201–1208. doi: 10.1083/jcb.98.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Metcalfe M. Free energy potential for aggregation of mixed phosphatidylcholine/phosphatidylserine lipid vesicles in glucose polymer (dextran) solutions. Biophys J. 1984 Apr;45(4):715–720. doi: 10.1016/S0006-3495(84)84213-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
- Follett E. A., Goldman R. D. The occurrence of microvilli during spreading and growth of BHK21-C13 fibroblasts. Exp Cell Res. 1970 Jan;59(1):124–136. doi: 10.1016/0014-4827(70)90631-2. [DOI] [PubMed] [Google Scholar]
- Gerson D. F., Capo C., Benoliel A. M., Bongrand P. Adhesion, phagocytosis and cell surface energy. The binding of fixed human erythrocytes to rat macrophages and polymethylpentene. Biochim Biophys Acta. 1982 Oct 22;692(1):147–156. doi: 10.1016/0005-2736(82)90512-0. [DOI] [PubMed] [Google Scholar]
- Jan K. M., Chien S. Role of surface electric charge in red blood cell interactions. J Gen Physiol. 1973 May;61(5):638–654. doi: 10.1085/jgp.61.5.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
- Mege J. L., Capo C., Benoliel A. M., Foa C., Bongrand P. Study of cell deformability by a simple method. J Immunol Methods. 1985 Sep 3;82(1):3–15. doi: 10.1016/0022-1759(85)90219-4. [DOI] [PubMed] [Google Scholar]
- Mege J. L., Capo C., Benoliel A. M., Foa C., Galindo R., Bongrand P. Quantification of cell surface roughness; a method for studying cell mechanical and adhesive properties. J Theor Biol. 1986 Mar 21;119(2):147–160. doi: 10.1016/s0022-5193(86)80070-4. [DOI] [PubMed] [Google Scholar]
- RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos E., Spiele H., Feltkamp C. A., Huisman H., Wiegant F. A., Traas J., Mesland D. A. Localization of cell surface glycoproteins in membrane domains associated with the underlying filament network. J Cell Biol. 1985 Nov;101(5 Pt 1):1817–1825. doi: 10.1083/jcb.101.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sung L. A., Kabat E. A., Chien S. Interaction energies in lectin-induced erythrocyte aggregation. J Cell Biol. 1985 Aug;101(2):652–659. doi: 10.1083/jcb.101.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]